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( R ;  ),, + , is defined by 

Since ( R ; ) , , + ,  tends to ( R f ) , , ,  if cx and E, tend to zero, it 
follows that the rate of C,(”) tends to R, defined in (11). 

We split the information into p pairs of { [ p ( B  + 2 c ) J , [ p ( H +  
2c)J) bit and up 7 D pairs of {O,Ip(qm - 8) (R; ) ,+ ,J}  bit. The 
first part is transmitted in packets 9, , with the Tolhuizen scheme. 
In 9,, D < i I up,  we encode the m states with { [ ( I l m  + cx)(qm 

8 ) ( R i ) , l + l j  new mformation symbols to these and fills up until 
he has [(Z2,,, + cx + ( R ; ) , + , ) ( q m  + 8 ) p l .  All of them are trans- 
mitted together, using the (asymmetrical) code C{:] 

+ ~ ) P ~ , K I ~ ~  + C ? ) ( q , , ,  + 8)pl) symbols. User 2 adds lp (qm - 

with 

Now the proof can be finished in the same way as in Theorem 5. 
One final remark concerns the convergence of the sequence 

R, , .  In the symmetrical case the points (R,, R,) are all on the 
line R, = R 2 ,  and their distance to the origin increases monotoni- 
cally. In the asymmetrical case, however, the points (( R,) , , (  R 2 ) , )  
are not on a straight line. Here we must show that the sequence 
(qn)“ E is monotonically decreasing (or increasing, depending 
on ql > 1 or q1 < 1); hence ( R , ) ,  is increasing (decreasing) and 
has a limit R,. Although ( R 2 ) ,  is not monotonic, it can be 
shown that this sequence converges, too. We find that the limit 
(R, , R2) satisfies (11, which is what we had to show. 
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A New Geometric Capacity Characterization of a 
Discrete Memoryless Channel 

KENJI N A K A G A W A ,  ASSOCIATE MEMBER, IEEE, 
AND FUMIO M A Y A ,  MEMBER, IEEE 

Abstract -A novel geometrical characterization of capacity of a discrete 
memoryless channel is proposed according to Csisziu’s theorem, which 
represents the capacity using the Kullback-Leibler discrimination informa- 
tion. As a result, a new geometrical capacity computing method is given. 

I. INTRODUCTION 
Computational methods for the capacity of a discrete memory- 

less channel proposed to date may be divided into direct comput- 
ing methods [1]-[3] and sequential computing methods [4]-[6]. In 
the direct computing method the capacity C is calculated accord- 
ing to linear equation theory and @e Kuhn-Tucker condition of 
convex programming. In the sequential computing method a 
sequence {p“)F=p=o starting at an appropriate initial probability 
distribution p o  is defined, and it is shown that the sequence 
converges to a probability distribution attaining C. Furthermore, 
the convergence speed is estimated. 

The present correspondence belongs to the direct computing 
category. Since Muroga’s method 111 is based on the linear 
equation theory, it is not easy to understand the relation between 
the row probability vectors of a channel matrix and the probabil- 
ity vector attaining C. After characterizing C geometrically, we 
present a new computational method based on Csiszk‘s theorem 
which describes C as the solution of a minimax problem using 
the Kullback- Leibler discrimination information. 

11. DEFINITIONS 
Let X = { x l , . . . , x m )  and Y = { y l , - . - , y , }  be theinput and 

output alphabets, respectively. Let Q(u, Ix,) be the conditional 
probability of YJ when x, is given. We treat a discrete memory- 
less channel whose channel matrix is 

Q = ( Q ( ~ I ~ , ) ) ,  i = i , . - . , m , j = i  ,..., n. 

(The ( i , j )  entry of Q is Q(y,lx,).) If there is no ambiguity, we 
also call Q itself a channel. Let 

be the probability distribution on Y when x, is transmitted. We 
denote a probability distribution on X by p ( x , )  and that on Y 
corresponding to p ( x , )  by q(y,); i.e., 

m 

4 4 )  = ~ ( x , ) Q ( ~ , l x , ) ,  or q = P Q .  
1-1 

We define two sets of probability distributions: 

We define the Kullback-Leibler information by 
n 

D(q111q2) A c 4; log( q;/qf) 
j = l  
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where q1 = (q;; . . , qfi), q2 =(q:, . . e, q i )  E in. It is well-known 
that D(q1[lq2) has the following properties: 

1) P(q111q2) 2 0 :  equality holds if and only if q1 = q2;  
2) in general, neither D(q'11q2) = D(q211q') nor 

3) convexity: if q = (1 - X)ql + Aq2  and i j  = (1 - X)ijl + 
Xij2(02s-$ 5 l), then D ( q ( ( i j )  I (1 - A)D(qlllijl) + 
D(q'llq2)+ D(q211q3) 2 D(q'llq3) holds; 

AD(q 114 1. 
For k points 4';. . , q k  in R", let C(q'; .., q k )  be their 

qk be the minimum linear subspace convex hull and q1 
they span. 

. . . 

111. LEMMAS AND KNOWN THEOREMS 
Lemma I: Any q E C ( q l ; . . , q k )  is contained in a simplex 

Lemma 2: If three distinct points q', q2,,q3 E A" are located 
with vertices belonging to { q l ; .  ., q k }  (see [7, p. 151). 

on a line in this order, the following inequahty holds: 

D(qlllqZ)+ D(q211q3) < D(q'llq3). 
Proof: From this condition, a positive number a exists 

such that q1 - q2 = a(q2 - q3) .  Thus if q' = (q i , - .  ., 4:) ( i  = 
1,2,3) we have 

D( q1Ilq3) - D(q111q2) - D(q211q3) 
n 

= c (4;  - q;) log( 4,2/4,3) 

= a c ( 4,' - q;) log( q;/4/3) 

, =1 

n 

/ = I  

Theorem (Csiszhr): The capacity of a discrete memoryless 
channel Q is equal to 

Furthermore, qo E p which achieves the minimum is unique and 

mizes the mutual information I ( p ,  Q) (see [8, p. 142, 1471). 

maximizes I( p, Q )  if and only if a constant C exists satisfying 

qo - - p  0 Q, where po is any probability distribution that maxi- 

Theorem (Kuhn- Tucker): An input probability distribution p 

(see [9, p. 911). 

IV. GEOMETRIC CHARACTERIZATION OF CAPACITY 
Without loss of generality we let Q1;--,Qk be the extreme 

Theorem I :  If a probability distribution qo satisfymg 

points of V = C ( Q ' , . . - , Q ' " ) .  

D(Q'l lqo)  =C(constantfori=l; . . ,k) 

is in V ,  C is the capacity of the channel Q 

{ Q ' , - . . , Q r } ,  such that 
Proof: From Lemma 1, a subset of { Q',. . -, Q k }  exists, say, 

r 

qo = a,Q' 
1 - 1  

r 
a f = 1 , a , > ~ , i = 1 , . - . , r .  

i-1 
= a {  D( q211q3) + D( q31(q2)}  > 0. Q.E.D. 

Defining an input probability distribution p o  by 
Lemma 3: For ql, q2 E An(ql + q2), X 2 0, 

i = 1 , .  . . , r  
f(  = D(  qlll(l - A) q1 + hq2)  

= { ::' i = r + 1,. . . , k ,  
and 

d X >  = w 1 -  A >  4' + Xq211q') 

are both increasing functions of A.  
Proof: Lemma 3 is trivial by Lemma 2. Q.E.D. 

Lemma 4: Let V be a closed convex subset of E. For q E p ,  
if there is some r E V such that D ( r J J q )  < 00, then a unique 
ro E v exists minimizing 

D(rllq), ( r E V )  
(see [8, p. 591). 

We call this ro the projection of q onto V ,  and denote it by 

ro = pr.,,( 4). 

We define a linear set E in 2 by 
I n  

akJ , b, are constants and k ranges over a finite index set 

For example, a straight line connecting two probability distribu- 
tions in p ,  a plane determined by three distributions, and so 
forth, are linear sets. 

Pythagorar Theorem: Let E be a linear set in &". For r E &", 
let q = pr .E(r) .  Then for any s E E, 

D(sllq)+ D(qllr) = D(sllr) 
holds (see [8, p. 591). 

we obtain qo = p o Q .  From the theorem assumption, for i = 
1,. . ., r ,  we have 

D(Qfll~oQ) = D( Q'llq') = C. 
On the other hand, for i = r +1;. -, m ,  from Lemma 1 a subset 
of { Q', 1 . . , Q k  } exists, say, { Q', . . . , Q' }, such that 

S 

e'= &eh 
h -1 

S 

f i h = l , ) B h > o ,  h = l , * * '  1 s. 
h = l  

Therefore, using the convexity of D, we have 

D(Q'llqo) = D (  ~ l & Q h l l q o )  

5 C BhD(QhllqO) 

= C ,  

S 

h =I  

i =  r +1;. ., m .  

Consequently, p o  satisfies the Kuhn-Tucker condition, and qo 
attains the capacity. These results are independent of the choice 
of points representing qo and Q' as convex linear combinations. 

Q.E.D. 
A distribution q E 3 satisfying 

D(Q'llq) = . . *  =D(Qkllq) 
is called an equidistant point from Q1; . e ,  Qk. According to the 
previous theorem, we find that when we try to compute C,  it is 
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not necessary to consider the probability vectors that are not the 
extreme points of V. 

Even if the point equidistant from the extreme points of V 
exists, it may not be in V. Since the unique qo that attains the 
capacity must be in V ,  any equidistant point outside V does not 
attain it. The following theorem specifies the relation between an 
equidistant point q 6i V and the capacity-achieving point qo. 

Theorem 2: If q is equidistant from Q1, . . . ,Qk ,  then qo= 
pr. ( q )  achieves the capacity. 

Proof: By Lemma 1 a subset of { Q', . . . , Qk } exists, say, 
{ Q ' ; . . , Q r } ,  such that 

f 

qo=  2 Y,Q' 
r = l  

1 

y, 11, y, > 0 ,  i =1;. . , t .  
r = l  

Thus denoting E = Q' . . . Qr we have 

qo = Pr.v(q) = Pr-Aq).  

The Pythagoras theorem shows that 

D( Qrllqo) = C (constant for i =1;. * ,  t ) .  

If we can show 

D( Qrllqo) I C ,  i =  t +1;* ., k ,  

the proof is completed. Let L, be the line connecting Qr ( i  = t + 
1,. . . , k )  and qo. First, we show that on the line L, , q' = pr. L, (q),  
qo,  and Qr are located in this order. Suppose qr is between qo 
and Q'. Since the line segment connecting qo and Qr is included 
in V ,  we have 

D(qOllq) 5 D(q'lld (1) 

because of the minimality of D(qollq). On the other hand, by the 
Pythagoras theorem, 

o(q0114')+ D(4'114) = D(q0Ilq) 

~(4r11q)  <D(qOllq). 

holds, and therefore, 

However, this contradicts (1). 

Pythagoras theorem and Lemma 3, we have 
Next, suppose qo, Qr, and qr are located in this order. By the 

D(qOllq) = D(q0llqf)+ D(qlll4) 

> D(Q'llqr) + D(q'lIq) 

= D( Q'l lq) .  

This also contradicts the minimality of D(qollq). Therefore, it 
has been shown that q', qo, and Qf are in this order on the line 
L, . Now when i = t + 1,.  . . , k ,  by the theorem assumption, we 
have 

D(Q'llq) = D(Qfllq). ( 2)  

D(Q'llqo) + D(qollq) = D(Q'llq) (3) 

o(Q'llq')+ D(q'Ilq) = D(Qrllq) (4) 

D(qOllq')+ D(q'Ilq) =D(qOllq). ( 5 )  

Furthermore, by the Pythagoras theorem, we have 

Therefore, from Lemma 2 and (2) - (5)  we have 

D(Qrllqo) 5 D(Qrllq') - D(qollq') 

=D(Qrl lq)  - D(qollq) 

=D(Q'llq)- D(qollq) 

= D(Q' Iko)  
= c. Q.E.D. 

From now on, we assume that 
dim(QlU . . .  u Q k )  = k - 1 ,  

Le., k points Q',. . ., Qk are in the general position. In this case, 
the point q equidistant from Q',. . ., Q' always exists and it is 
represented as 

k 

q= c Ale'. 
If A, 2 0 for all z =1;. a ,  k ,  the q E Y ,  and so q achieves the 
capacity by Theorem 1. Muroga [l] indicates that "if A < 0 for 
at least one i, choose k - 1 points arbitrarily from Q',. . ., Qk 
and represent the point equidistant from these k - 1 points as a 
linear combination shown above. Repeat this calculation for all 
possible choices of k - 1 points. If there exist cases where all the 
coefficients are nonnegative, the maximum transmission rate 
among them is the capacity. Otherwise, reduce the number of 
points to k - 2, k - 3, .  . . , and do a similar calculation until we 
have some cases where all the coefficients are nonnegative." 

This method is correct but contains much redundancy. A more 
effective method is proposed below. 

Theorem 3: We can obtain the qo which achieves the capacity 
by a maximum of k - 2 projections onto linear sets. 

Since qo = pr.,(q) according to Theorem 2, in principle we 
can obtain qo by one projection. However, it is difficult to 
calculate qo using this method. In fact, when we want to project 
q onto V ,  we must solve the minimum problem 

I  =1 

minD(rllq). 
r € V  

However, in general, qo is on the boundary of V ,  so we cannot 
use Lagrange's method of indeterminate coefficients to solve it. 
Theorem 3 offers an algorithmic method to obtain qo which 
circumvents the difficulty at the sacrifice of a possible increase in 
number of iterations. Here "algorithmic" means the iterative 
projections onto linear sets, in which case we can use Lagrange's 
method. 

Proofi Represent the point q equidistant from the extreme 
points of V as 

k 

q= A,Q' ,  
1 - 1  

k 

A,  A1 9 '  " 9  A,, > 0, A,,+, 9 '  * ' )  A, 5 0. 
r = l  

Denoting E' = Q' . . . Qkl and q' = pr. ( q ) ,  we have 

In fact, the equality for i =1;. ., k ,  holds by the Pythagoras 
theorem. For i = k ,  + 1; . ., k ,  let L,, be the line connecting q1 
and Qr, and let r'' = pr.L,,(q). Then we find, as previously 
mentioned in proving Theorem 2, that Q r ,  ql,  and r' are located 
on L,, in this order. Thus we have 

D(Q'llq') 5 D(Q'llq') 
= c, . 
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Now suppose q' is represented as 

k l  

4' = p,Q' 
1 - 1  

kl  

p,=1,  /h,"'9pk,>o, ~ k , + l , ' . ' , p k l I O .  
i - 1  

Denoting E' = Q' Qk2 and q2 = pr.E2(q1), we have 

constant for i =1,- . . , k, 
D(Q'llq2){ lz: i = k2 + 1; . . , kl 

in the same way as before. For i = k, + 1; . -, k, it can be shown 
that D(Q'11q2) I C, holds as follows. Let L,, be the line con- 
necting q2 and Q' ( i=k ,+ l ; - . , k ) ,  and let ~ " = p r . ~  (4). 
Then it is evident from the previous argument that on th$line 
L,, , Ql, q 2 ,  r2' are in this order. Therefore, we have 

D(Q'llq') I D(Qlllr") - D(q211r2') 

=D(Q'llq') - D(q211q') 

= D( Q' l l  q 2 )  

~C1-D(qZIlq' )  

=e2, i = k l + l , - . . , k .  

We iterate this procedure to obtain q', q2,  q3,. - a  until all coeffi- 
cients are positive. Let k,, be the number of QJ having positive 
coefficients in the representation of 4'. The worst case is that 
k,, = k, - 1 holds for all i = 1,2, . Since the point equidis- 
tant from two points always belongs to the line segment connect- 
ing them, we can obtain qo that achieves the capacity by a 
maximum of k - 2 iterative projections. Q.E.D. 

Now we assume 

~ ( Q ' w  ... w Q k ) = d - l < k - l .  

In this case, a point equidistant from Q'.. - +, Qk does not exist. 
However, d points chosen arbitrarily from Q', . . . , Qk are in the 
general position. Therefore, there exists a point equidistant from 
these d points. Thus by using the foregoing method we obtain 
k c d  values of channel capacity for all combinations. The follow- 
ing theorem ensures that the maximum among these & values is 
the true capacity. 

Q k )  = d - 1, the maximum 
value among the k c d  values of "capacity" computed for d points 
chosen arbitrarily from Q',. e ,  Qk is the true capacity. 

Proof: Let Q1, . * * ,Qh  be the points in Q1:..,Qk such 
that D(Q1llqo) = = D(QhllqO) is the greatest value among 
D(Q'11q0); e . ,  D(QkllqO), where qo is the capacity-achieving 
point. Since qo E C ( Q ' , . - - , Q ~ ) ,  by Lemma 1 a subset of 
{ Q ' ; . . , Q h )  exists, say, {Q i , . . . ,Qh l ) ,  such that qo is con- 
tained in the simplex having Ql,. * -, Qhl vertices. Then h, I d, 
and if we solve Csiszhr's minimax problem for any d points 
including those h, points, we obtain the true capacity C. The 
rates for the other choices of d points are, of course, not greater 
than c. Q.E.D. 

Theorem 4: If dim(Q' . . . 

v. EXAMPLES 

1) 2x2 Channel Matrix: The capacity C of a channel 

is 

log(l+ e A )  -(1- b) H'/( a - b )  

0, 
+ (1 - a )  H 2 / (  a - b ) ,  a + b  

a = b ,  

where 

H' = - a log a - (1 - a )  log( 1 - a )  

and 

A = ( H' - P) / (  a - b )  * 

In this case, the convex hull V of Q1,Q2 is the line segment 
connecting Q1 and Q2. Since the equidistant point qo from Q' 
and Q2 always exists in V, C=D(Q'llqo) is the capacity by 
Theorem 1. 

2) 3 x 3 Channel Matrix: Next, we consider a channel 

1 3 3 
Ea,=  C b , -  ~ c 1 = l , a , , b , , c 1 1 0 , i = 1 , 2 , 3  . 

( 3  1-1 1 - 1  r = l  

For two probability distributions Q', QJ ( z  # j ) ,  the "midpoint" 
of Q' and QJ is defined by a point M'J which satisfies the 
following: 

1) M'J is on the line segment connecting Ql and QJ; 
2) D(Q'llA4'J) = D(QJ1IM'J). 

Further, we call D(Q'1lM'J) the "half-length" of the line seg- 
ment connecting Ql and QJ and denote it by d(Q',QJ). By 
definition, we have d(Q', Q J )  = d(qJ,  e'). Without loss of gen- 
erality, we may assume that d(Q , Q ) is the greatest value 
among d(Q' ,Qz) ,  d(Q2,Q3), and d(Q3,Q'). Let qo be the 
equidistant point from Q1, Qz ,  Q3; i.e., qo is the unique solution 
of the following equation: 

Then we have 
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