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Theoretical Studies on the Performance of Lossy
Photon Channels

FUMIO KANAYA, MEMBER, IEEE, AND KENJI NAKAGAWA, MEMBER, IEEE

Abstract—Since light in a number state is free from inherent quantum
statistical fluctuations associated with an ideal photon counting measure-
ment, it is promising as an information bearing light in direct-detection
optical communication systems. However, after undergoing independent
random photon deletions due to the lossy effect of the channel, even
number-state light gives rise to a random photon counting process at the
output of a perfectly performing photon counting device. Therefore, even
in noiseless optical channels, the lossy effect must be taken into account
as an important degradation factor which limits the channel performance.

The objective of this paper is first to study how channel losses affect the
capacity of noiseless optical communication systems utilizing the number
state; then, based on these findings, to evaluate photon efficiency of these
systems in the presence of losses. Then, by comparing the photon
efficiency of the number-state PPM and the coherent-state PPM under
certain realistic conditions, it is found that the former is always superior
to the latter from the perspective of photon efficiency regardless of losses.

I. INTRODUCTION

T is a familiar fact that light emitted by a laser operating

in a pure coherent state exhibits quantum mechanical
photon-flux fluctuations. In other words, the number of
photons contained in one propagation mode or light pulse must
be considered to be a random variable whose statistical
distribution is Poisson. This results in the possibility of
nonzero decoding error, even in a noiseless optical channel
where the background optical noise and thermal noise of the
receiving system are negligibly small.

Recently, considerable interest has emerged in quantum
states of light other than the coherent state. One example of
such a quantum state is the squeezed state (or two-photon
coherent state), whose quantum-mechanical properties have
been extensively studied theoretically (see, e.g., [1]) and
generation has been observed experimentally [2]. Applied to
optical signals, this state features reduced quadrature ampli-
tude noise and optical communications systems which exploit
the properties of squeezed light have already been proposed
[3], [4].

Another example of a nonclassical light field is a number
state, whose generation has been the target of a recent study
[5]. This state features zero uncertainty for the photon
number, that is, the number of photons contained in one light
pulse is a single, well-defined value rather than a Poisson
distributed random variable. Since there can be no quantum
statistical fluctuation present in the signal at the output of a
photon counting device, an optical communications system
utilizing direct photon detection could conceivably benefit
from the unique properties of the number state. This concept
has been confirmed by computing the channel capacity [6] for
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a lossless optical channel using the number state where every
photon of the transmitted light beam reaches the photon
detector and properly adds to the photon count.

However, if the channel is lossy, the benefit of utilizing the
number state is thought to be lessened because after undergo-
ing independent random photon deletions due to the lossy
effect of the channel, even the number state light would yield a
random photon counting process at the output of the photon
detector, resulting quite naturally in a reduced channel
capacity. Therefore, even in noiseless optical channels,
transmission loss must be taken into account as an important
degradation factor. Thus, it is essential in a lossy optical
communications context to understand how loss affects the
performance of an optical communications system utilizing the
number state.

In this paper, first the capacity of an optical channel with
loss is calculated for a number of modulation schemes utilizing
the number state, and closed-form capacity formulae are
obtained in terms of the transmittance coefficient. Then based
on these formulae the photon efficiency is derived, which is
defined as the capacity per transmitted photon. This is
optimized for a PPM scheme subject to the constraint that both
the channel capacity per second and the channel bandwidth are
fixed at certain values. Then, the optimized photon efficiency
is compared between the number state and the coherent state
PPM scheme. From this it is concluded that the photon
efficiency in the number state is always superior to that in the
coherent state regardless of the transmittance coefficient.

II. CALCULATION OF CHANNEL CAPACITY

In order to characterize the channel matrix of various
photon channels, it is first necessary to refer to the problem of
photon counting statistics.

Let the lossy effect of the optical channel be represented in
terms of real-valued transmittance coefficient n € [0, 1].
Then, the probability that the number state of m photons
transmitted over this lossy channel produces an output of n
photons to the receiver is given by a familiar binomial
distribution [7]

p(n)= (’:) "(I-mm " n=0,1,---,m (1)
Concerning the above equation, it is noted that since photon
counting statistics specific to lossy photon channels utilizing
the number state are not Poisson, any capacity formula ever
derived for Poisson-type channels (see, e.g., [13]) is not
directly applicable to the former case.

In order to focus on the lossy effect of the channel, it is
hereafter assumed that the background radiation noise and the
thermal noise of the receiving system are negligibly small and
that photon counting is executed perfectly.

A. PAM Scheme

In thc M-ary PAM scheme, M different number states 0, 1,
2, -+, M — 1 are prepared at the 5cndmg side for optical
pulse transmission, and at the receiving side the actually
transmitted state is estimated based on direct photon counting.
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Thus, from (1) the channel matrix for this scheme can be
characterized by the following transition probability:

i ; . i=0,1, ---, M-1

. (j) ﬂ’(l—ﬂ)"_Js i=0. 1, -+, i

QU= J=0% 50 )
0 otherwise
In the event that M = 2, the channel matrix is
1 0

- 3
Q (1—,, n) ©)

and thus, using a general capacity formula for a2 x 2 channel
matrix [8], the channel capacity is given by

C=log (1+exp (—H,/q)) 4
where
H, 2 H(y, 1—1). (5)

Throughout the paper, the channel capacity C is measured by

«  nats per channel use and an ordinary entropy function is
denoted as H, that is, for the probability distribution (gq,, g2,
e ’ qﬂ)

H(q1, @2 "5 Gn) 2 =) qilog gi. (6)
i=1
In the event that M = 3, the channel matrix is
1 0 0
Q= 1-9 1 0 Y
(1-m)? 29(1-n) =?
and, again using a general capacity formula for a 3 x 3
channel matrix [8], the channel capacity is given by
log (1+exp (—H,/1)
Cc={ +exp(—(H-2(1-nH)/7*), no=n=1,
log (1+exp (—61)), O=n=mo
(8
-’ )
where
H, & H((1-7)% 2n(1—1n), 7?), ©)
6, £ H(1-m)3% 1-(1-9)?)/0-(1-n)?), (10)
and 7, is the unique solution to the equation
(2—n) log 2+1log (1-9)=0. (11)

Fig. 1 shows the channel capacity C plotted against transmit-
tance coefficient n where M = 2 and 3.

In the event that M = 4, it is not a simple task to derive the
closed-form expression of C which is valid for all y € [0, 1].
However, for n in the vicinity of one or zero, using the
geometric method [8], it is possible to obtain

M-1 k
log (l+ Y, exp (—E w“H,:)) , n=1, (12
C=

k=1 =1

log (1+exp (—8,)), 7=0 (13)
where the inverse matrix of Q is introduced by W = (wy). H;

is defined as the entropy of the /th row probability vector
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Fig. 1. Channel capacity versus transmittance coefficient for PAM scheme.
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Fig. 2. Channel capacity versus transmittance coefficient for PAM scheme.

Thin curves are obtained by Arimoto’s numerical capacity computing
algorithm [9]. Thick curves are obtained from (12) and (13).

n’) (14)
and 6, is defined as
Oo=H((@A-m ', 1-(1=-m)M1)/QA-1-mM-1). (15)

For the details of the calculation, see Appendix A. Fig. 2
shows the channel capacity C plotted against n for M = 4. In
Fig. 2, the thin curves are obtained by using a well-known
numerical capacity computation method [9]. It can be con-
cluded from Fig. 2 that (12) and (13) are valid for a rather
wide range of 7.

B. PPM Scheme

In the M-ary PPM scheme, a total of M symbols are
prepared at the transmitting side. The kth symbol is shown in
Fig. 3. Here it is assumed that a number state of m photons is
needed to transmit each symbol; that is, exactly m photons are
assigned to each optical pulse having a time duration of 7
seconds. At the receiving side, the kth symbol is estimated to
be actually transmitted only if direct photon counting indicates
at least one photon existing at the kth time slot. Therefore,
symbol erasure occurs if no photons are detected at the time
slot. Thus, the channel matrix for this case is M X (M + 1)

of Q, i.e.,
HI é H ((l_ﬂ)-’, (:) ﬂ(l_ﬂ)"_], T
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Fig. 3. The kth symbol of PPM scheme.
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Fig. 4. Channel capacity versus transmittance coefficient for PPM and
PPAM schemes where M = 3.

and given by

1-9 8 0 O 0
0= 1-46 ' 0 6 0 0 (16)
1-40 : o 0 0 - 90
where 1 — @ is the symbol erasure probability, i.e.,
1-6=(1-9)" a7

This represents a so-called symmetric channel, whose capacity
is given by the well-known formula

C=0log M. (18)

Fig. 4 shows the capacity plotted against n for several values
of m with M fixed at 3. It is clear that a larger m is useful in
combating loss, if only disregarding a sacrifice in photon
efficiency. This issue will be discussed in greater detail later in
this paper.

C. PPAM Scheme

The PPAM scheme is a sort of combination of the PPM and
PAM schemes. That is, in the PPAM scheme an extra symbol
¢ meaning no photons at all time slots is added to the ordinary
M-ary PPM symbols. Thus, the channel matrix in this case is
(M + 1) x (M + 1), and given by

1 0 0 0 0
1-6 6 0 0 - 0

o=/ 1-6 0 9 o 0 19)
1-6 0 0 0 -+ 6
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Fig. 5. Channel capacity versus transmittance coefficient for PPM and
PPAM schemes where m = 1.

where @ is the same as defined in (17). It is obvious that when
M is set equal to one, the PPAM scheme can be reduced to the
binary PAM. On the other hand, it is assumed that the PPAM
scheme begins to look like the PPM scheme as the probability
of symbol ¢ becomes smaller. Actually, the channel capacity
formulae derived below are something like mix of those of
PAM and PPM schemes. For M = 1 and 2, utilizing a general
capacity formulae fora2 X 2and 3 X 3 channel matrix, [8]
readily yields

C=log (1+Mexp (-H/0), 0=6=1 (20

For M = 3, the geometric computation method in [8] can also
be used profitably to yield

oo [log (1+Mexp (-H/8), 6=06=1 (21
6 log M, 0=60=6 (22)
where
H £ H@, 1-6) (23)
and 6, is the unique nonzero solution to the equation
6 log M+log (1-6)=0. (24)

For the detailed calculations, see Appendix B. In Fig. 4, the
dashed curves show the channel capacity of the PPAM
scheme. It is evident that the PPAM scheme is superior to the
PPM scheme, especially for % in the vicinity of one. Fig. 5
shows channel capacity curves plotted against  for various M
values with photon number m fixed at one.

III. COMPARISON OF PHOTON EFFICIENCY

As mentioned previously, it is possible to combat the effect
of loss and increase channel capacity by increasing the number
of photons transmitted per symbol. However, this leads to
a decrease in photon efficiency and thus, to excessive
consumption of optical power. Here photon efficiency is
measured by nats per transmitted photon. That is, let the
average number of photon transmitted per symbol be denoted
by N; photon efficiency C, can then be defined as

C, £ C/N (nats/photon). (25)

Initially, for the sake of simplicity, consider a lossless
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TABLE I
MAXIMUM ATTAINABLE PHOTON EFFICIENCY IN LOSSLESS CASE

Cp nat/photon
Alphabet
size PAM PPM PPAM
2 2log 2 log2 —_—
3 log 3 log3 (3/2)log 3
4 (2/3)log 4 log 4 (4/3)log 4
5 (1/2)log 5 log 5 (5/4)log 5

channel. In this case, the photon efficiency of each modulation
scheme is as follows.
For the PAM scheme

C,=(2/m) log (1+ m), (26)
for the PPM scheme
C,=(1/m) log M, (27)
and for the PPAM scheme
Co,=((1+M)/mM) log (1+ M) (28)

where it is assumed that for each modulation scheme, peak
transmitter power is limited to the common value of /7 photons
per symbol and quite naturally each symbol is equiprobable.
Table I shows the maximum attainable photon efficiency of
each scheme as an alphabet size, that is, the maximum number
of transmitted symbols, is varied. It is evident from Table I
that 1) among binary modulation schemes, the PAM scheme
yields the optimum photon efficiency, 2) for an alphabet size
larger than two, the PPAM scheme is always the best with
respect to the photon efficiency, and 3) the photon efficiency
values for the PPM and PPAM schemes asymptotically
become equal as the alphabet size increases. Hereafter, let us
focus on the PPM scheme. The objective of the following
discussion is to compare the photon efficiency between PPM
schemes using the number state and the coherent state.

It has been known for some time that the photon efficiency
of the noiseless photon channel without loss can be infinite
even for the coherent-state PPM scheme only if either the
channel bandwidth is allowed to exponentially approach
infinity or the channel capacity per second approaches zero
[10]. However, neither of these conditions is realistic. Even in
optical communications systems, the bandwidth actually avail-
able is limited and the need to realize some given nonzero
capacity measured in nats per second using as little optical
power as possible is also a real constraint. Therefore, prior to
comparing the photon efficiency, the PPM scheme must be
optimized for both the coherent state and the number state
subject to the constraint that both the channel capacity per
second and the channel bandwidth are fixed at certain
prescribed values.

For the coherent state PPM scheme, such an optimization
has been already carried out for a lossless photon channel in
[11]. Thus, by using our notation and taking into consideration
lossy effect on the average number of received photons, it
follows from [11, egs. (2) and (3)] that for both the channel
capacity per second Cr and the photon efficiency C, in the
presence of channel losses

Cr=((1-exp (—nm))/TM) log M (nats/s), (29)
Cp=((1—exp (—nm))/m) log M (nats/photon). (30)

Since the parameter 7 appearing in (29) is, as mentioned
earlier, the pulse width and thus directly related to the inverse
of the channel bandwidth, it is acceptable to consider a
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TABLE II
COMPARISON OF THE PHOTON EFFICIENCY BETWEEN THE NUMBER
STATE AND THE COHERENT-STATE PPM SCHEMES WHEN cy79 = 107!

n|Cp m M| Tp m M |cp/Cp
1.0/3.56 1 35|1.86 0.86 16 |1.91
.8 13.06 1 30 |1.67 0.96 16 |1.83
.8 261 1 26|1.49 1.08 16| 1.75
71213 1 21(1.30 1.23 16| 1.64
.6 [1.66 1 16 [1.12 1.43 16| 1.49
51124 1 12|0.93 1.72 16| 1.34
41083 2 18 |0.74 215 16| 1.24
.3 |0.65 2 13|0.56 2.87 16 1.17
.2(0.41 4 16[0.37 4.30 16 |1.10
.1]0.19 8 15|0.19 861 16 |1.04

TABLE III
COMPARISON WHEN ¢y = 102

n|{C m M| Cp @ Cp/Cp

E<]

6.47 1 647|4.23 0.42 176| 1.53
571 1 571|3.81 0.46 176 |1.50
4.96 1 496 |3.38 0.52 176 1.47
423 1 423 |2.96 0.59 176 |1.43
3.52 1 351|254 069 176 |1.39
2.82 1 282 |2.12 0.83 176 1.33
215 1 214 [1.69 1.04 176 |1.27
1.50 1 150 |1.27 1.39 176| 1.19

oW R B N D O

0.94 2 188 |0.85 2.08 176 |1.11

0.45 4 178|042 4.16 176 |1.05

constraint on 7 instead of on the bandwidth itself. At this point,
Cp must be maximized, subject to the condition that Cy and 7
are fixed at specific values ¢, and 7y, respectively. It can be
easily shown that this is equivalent to maximizing Cp as
expressed by the following function of M:

Cp= —ncoroM/log (1 —coroM/log M). @31

Since M is an integer larger than one and is required to satisfy
the constraint that the argument of the logarithmic function in
the denominator of (31) must be positive, only a finite number
of M values are permissible. Thus, it assured that Cp actually
attains a maximum.

For the number-state PPM scheme, considering (17) and
(18), the channel capacity per second Cr and the photon
efficiency Cp are given by

Cr=((1-(1-9)")/TM) log M (nats/s), (32)
Cp=((1-(1—n)")/m) log M (nats/photon). (33)

Now the problem is to maximize Cp with respect to m and M
which can be varied as the optimizing parameters subject to
the constraint that Cy = ¢, and 7 = 73. Because of the
additional constraint that both m and M must be positive
integers, it is difficult to obtain the analytic solution to this
maximization problem. However, since some mathematical
consideration ensures that Cp actually attains a maximum at
specific finite values of m and M, the numerical computation
method can be profitably utilized.

Tables II, III, and IV show a comparison of the maximum
attainable photon efficiency between the number state and the
coherent-state PPM given optimizing parameters /7 and M as
indicated where # is varied from 1.0 to 0.1 and c,7, is set to
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TABLE IV
COMPARISON WHEN 7o = 107?

n{c m M |Cp m M |cpsCpl
1.0[/9.12 1 9118 |6.55 0.28 1830 1.39
.8 |8.10 1 8099|590 0.31 1830 |1.37
.B|7.09 1 7093|5.24 0.35 1830|1.35
.7/6.10 1 6101 |4.59 0.40 1830 |1.33
6(5.13 1 5125|3.93 0.47 1830 |1.30
5417 4167 |3.28 0.56 1830 [1.27
40323 1 3232{2.62 0.70 1830 (1.23
3

.2

-

0.69 2069 |0.66 2.79 1830 |1.05
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0 10-%  10"4¢ 10°* 10°2 107!
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Fig. 6. Photon efficiency of the number state and the coherent-state PPM

schemes as a function of the product ¢o7o.

10-!, 10-2, and 103 nats, respectively. It is quite evident
from Tables II, III, and IV that the number state PPM scheme
is always superior to the coherent state from the view point of
photon efficiency irrespective of 7.

The maximal photon efficiency plotted against ¢y for

‘several values of 7 is shown in Fig. 6. It can be decisively

concluded from Fig. 6 that irrespective of 7, the optimal
photon efficiency of the PPM scheme increases monotonically
when either the channel capacity per second or the pulse width
is reduced.

It is important to note in Tables II, III, and IV, that even in
lossless case where 7 = 1, the photon efficiency of the
number-state PPM scheme is at most twice as large as that of
the coherent-state PPM scheme. It should be noted, however,
that such high photon efficiency is attainable in the coherent-
state PPM scheme only by the use of a very complex and often
impractical error correcting code, which is entirely unneces-
sary for the number-state PPM scheme.

IV. CONCLUSION

First, the capacity of lossy photon channels utilizing the
number state, is calculated for PAM, PPM, and PPAM
modulation schemes. As a result, regardless of losses, it is
shown that the PPAM scheme is superior to the PPM scheme
from the capacity point of view. Then through an evaluation of
photon efficiency, measured in nats per transmitted photon, it
is revealed that the number-state PPM and PPAM schemes
asymptotically become equal in photon efficiency as the
alphabet size increases. Finally, photon efficiency of the
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number state and the coherent-state PPM scheme are compared
under certain realistic conditions. It is concluded that the
former is always superior to the latter from the perspective of
photon efficiency regardless of losses.
APPENDIX A
Calculation of C in (12) and (13)
Necessary definitions are given first.

Probability distribution g is defined as a nonnegative row
vector

g=(q1, @ ***» @n), Y, q=1, allg; = 0. (A
J=1

Let A" be the set of all probability distributions, i.e.,

2 q‘;= 1’

Jj=1

Ar= {(ql, Gz ‘s Gn)

a

mwz@.(M)

The Kullback-Leibler information D(g'|g*) between two
probability distributions g' and g2 is defined by

D(q'llg®) £ Y gjlog (q}/a}).

j=1

(A3)

For k points g!, - - -, g* in n-dimensional Euclidean space,
let C(q!, - - -, g¥) be the convex hull of g!, - - -, g*. Now, the
calculation of C in (12) can proceed as follows. Let the ith row
vector of the channel matrix characterized by (2) be denoted as
the probability distribution given by Q'

Q' 2 (QO]H), Q(1]H), -+, QM ~=1]i)) (Ad)
and let V be defined as
vV acsQl, -, QM. (A5)

It is then obvious that each Q' is an extreme point of the
convex hull ¥ and considering (2), it is also evident that V' =
AM if y = 1. Therefore, letting g° denote an equidistant point
from all extreme points of V, i.e.,

D(Q°1¢°)=D(Q'g%)=""-=D(Q"'[q°) (A6)

it is evident that g° must be contained in V if y = 1. Thus,
according to the geometric characterization of channel capac-
ity [8], it can be shown that C is given by the Kullback-Leibler
information satisfying (A6).

Then, the next problem is solving (A6). Letting ¢° = (go,
qis """ QM-I) and

C=D(Q°l¢" (A7)

the following equations concerning g;'s are obtained from
(A6)

log go+C H,
0 log q:l-i-C __ F:’l (A8)
log q.\;_1+C Hﬂ:!’—l

where for/ = 0, 1, -+, M — 1, H,is defined in (14). Using
the inverse matrix W = (wy) of Q, it follows that solutions of
(AB8) are given by

k
Qi =€exp (—C—E wHH,) , k=0,1,---,M—1.

=1

(A9)
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Consequently, channel capacity C in (12) is readily obtained
by combining the last equations with the normalization
equation 241 g, = 1.

As 1 becomes smaller than one, it is no longer possible to
postulate that ¥ = AM. As a result, the equidistant point g° is
no longer contained in V. Geometrical consideration of the
channel capacity [8] shows that in this case, C in (12) is no
longer able to represent the actual channel capacity and that
the correct channel capacity in this case must be given by the
projection point of g° onto V. However, this projection
problem proves very difficult to solve, in general.

We are now in a position to calculate C in (13). For the case
1 = 0, it can be demonstrated by direct calculation that among
points Q%, Q!, - - -, QM1 Q9 and QM~! are the two remotest
points measured by the Kullback-Leibler information
D(Q°|| Q). Therefore, in this case it is presupposed that the
channel capacity is attained only if the two symbols 0 and M
— 1 are used with nonzero probability. This presupposition
can be validated by the well-known Kuhn-Tucker theorem
(see, e.g., [12], p. 91) as follows. Let R? be the midpoint
between points Q° and QM-!; that is, R? is the point that
minimizes D(Q°||R?) subject to the constraint

D(Q°||R%)=D(Q""'|R?).

Thus, letting R° (ro, 1, **
variational calculus that

(A10)

*y r'y—1), it follows from the
ro=1/(1+exp (—6,))

re=(/(1=(1=n)¥-1)) (M,;‘) nh(L =M1k
xXexp (—6;)/(1+exp (—6,)) k=1, e, M—1

(A11)

where 6, is defined in (15). Combining the last equations with
(A10) leads to the equality

D(Q°||R%)=log (1 +exp (—0,)). (A12)

On the other hand, it is not difficult to show that the set of
inequalities

D(Q°|R% = D(Q'||R%), i
can be equivalently expressed as

i=1,2, -, M=-2

1,2, .-, M=-2 (Al3)

u(n, i) = t(n, i), (Al14)

where
tn, i) £ {i—-M-1)(A-1-9))/A-=A-mM1)}
xlog (1—-1) (A15)

uia, i) & 21 ( ;) 7/(1 =)+~ log (( 1) / (j)) -

(A16)

Since it also can be easily verified after some calculation that
each inequality in (A14) holds only for 0 = 5 = #; with a
positive real number %; to be determined for each i = 1, 2,
++, M — 2, then, letting the minimum among #;’s be denoted
bY Mmin, it must follow that the set of inequalities in (A13)
jointly holds for 0 = 7 = %ui,. Therefore, it is confirmed by
the above argument that if D(Q°||R?) is selected for the
constant C, then C evidently satisfies the Kuhn-Tucker
condition for the channel capacity. Consequently, channel
capacity C in (13) can be derived directly from (A12).

M-
J
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APPENDIX B
Calculation of C in (21) and (22)

Let the ith row vector of the channel matrix in (19) be
denoted as a probability distribution by Q' and let V be the
convex hull of these vectors, i.e.,

V2ol e, o). (B1)

It is evident from the matrix form that if § = 1, then every Q'
is an extreme point of ¥ and ¥V = AM*!. Therefore, in this
case the equidistant point g° from all extreme points of ¥ must
exist in ¥ and thus, according to the geometric characteriza-
tion of the channel capacity [8], the channel capacity C must
be given by the equidistant point as follows:

C=D(Q°||q"). (B2)

The equidistant point g° = (go, g1, "**, gum) can now be
calculated easily from the equal distance condition

D(Q°l¢)=D(Q'¢%) =" =D(Q"| 4%

associated with the normalization condition £, g; = 1 and is
given by

(B3)

Go=1/(1+M exp (— H/9)), (B4)
gr=exp (— H/6)/(1+ M exp (— H/8)),
k=1, M (BS)

where H is defined in (23). Consequently, when 6 = 1,
channel capacity C in (21) can be readily obtained by
combining (B4) with (B2). As 6 becomes less than one, it is no
longer possible to postulate that ¥ = AM*! As a result, C in
(21) is no longer the actual channel capacity and another
channel capacity formula that is valid for small values of 6
must be pursued. In this case, the geometric consideration of
the channel capacity [8] and the Kuhn-Tucker theorem [12]
can again be used profitably as follows.

Let V be the convex hull of the set of row vectors excluding

QY i.e.,

vV &C(Q, 03 -, QM) (B6)

and let §° 2 (o, Gi, * -, gu) be the equidistant point in ¥
from all extreme points of V. It is evident from a geometrical
consideration that G can be calculated as the solution to the
following minimization problem:

n;}}n D(Q'14 (B7)
subject to the constraint
D(Q'|¢°)=D(Q*1g°)="--=D(Q"[ 4%, (BY)
M
2 de=1. (B9)
k=0
Variational calculus leads to the solution
{4’0= 1-6, (B10)
Gi=0/M, k=1, -+, M. (B11)
It can be readily understood that
G°=, I/M, -+, 1/M)Q. (B12)

This means that " is the probability distribution of the channel
output symbol if all the input symbols but symbol ¢ are
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transmitted with equal probability 1/M. Therefore, according
to the Kuhn-Tucker Theorem, the channel capacity C is given
by

C=D(Q'14" (B13)
if C satisfies the following:
C z D(Q°¢9). (B14)
It follows from (B10) and (B11) that
C=0log M (B15)
and
D(Q°)|¢°) = —log (1-9). (B16)

Therefore, inequality (B14) can be equivalently expressed by
0log M+log (1-6) = 0. (B17)

Since it can be easily shown that the last inequality has solution
0 < 6 = 6,, with 6, being the unique positive solution to (24),
channel capacity C in (22) is confirmed. On the other hand, it
can be ascertained by some calculation that at # = 6, values
of C in (21) and (22) coincide with each other. Consequently,
it is confirmed that C in (21) is actually valid for6, = 0 = 1.
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