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(l,l,O), (l,O,l), and (O,l,l). In the first case s* remains equal to 
2, in the next three cases s* is equal to 1, and in the last three 
cases s* becomes 0. 

If the triple (x,,x,, x,) is ( l , l , l ) ,  similar derivations can be 
made. As a result, we can construct the two matrices 

MO= 3 1 0 MI= 0 1 3 . 
1 0 0  1 3 3  

[3  3 11 [o  0 11 
M,, (resp. M , )  refers to the situation where (O,O,O) (resp. ( l , l , l ) )  
is transmitted by F. The rows (resp. columns) are indexed by the 
values 0,1,  or 2 of s (resp. s*). In position (s, s*) the entry of M ,  
is the number of triples that can be generated when the triple 
(x, x, x) is transmitted to the mailbox in state s and modified in 
such a way that the new state of the mailbox is s*. The character- 
istic polynomial of M := MOM, is A3 -30A’ +57A - 1 and the 
largest eigenvalue of M is A, = 27.9629. Using the same ideas as 
in the case b = 1, we see that, for any w E [0,1], the pair of rates 
R ,  = 2 ( w ) / 3 ,  R, = ( w  log A,)/6, is achievable. In the present 
case these pairs improve only slightly on the time-sharing strat- 
egy in the region of intermediate rates. Generalizing this strategy 

larger v iues  of b does not lead to any further %nprovemeii. 
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Geometric Characterization of 
Capacity-Constraint Function 

KENJI N A K A G A W A ,  ASSOCIATE MEMBER, IEEE, AND 
FUMIO W N A Y A ,  MEMBER. IEEE 

Ahstrod -We consider from a geometric point of view of maximizing 
the mutual information under a linear input constraint. Assuming a suitable 
regularity condition on the channel matrix, we find that the probability 
distribution (PD) equidistant from the row PD’s of the channel matrix 
plays an important role, and the maximum is achieved by the projection of 
that PD onto the set of PD’s satisfying the constraint. 

I. INTRODUCTION 
We consider a discrete memoryless channel whose input and 

output alphabets are X =  { X , , . . . , X , ~ ~ }  and Y =  { y , , . . . , y , I ) ,  
respectively, and whose channel matrix is 
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where Q, ,  L Q(y , lx , )  is the conditional probability of y, when an 
alphabet x, was transmitted. We denote the i th row vector of the 
channel matrix Q by Q‘ = (e,,,. . .,e,,,). We denote the input 
probability distribution (PD) by p = ( p , )  and the output PD 
corresponding to p by q = ( q / ) ;  i.e., 

m 

4, = AQ,, or 4 = PQ. 
r = l  

For two PD’s q=(q1 ; . . , q , , )  and @ = ( i j , , . . . , Q , I ) ~ p k  
{(a,; . . , a , I ) l X ~ ~ , a /  =1, a/ 2 0}, the Kullback-Leibler (K-L) 
divergence is defined as 

n 

D(qlIij) = c q,lodq, / i j , ) .  
J = 1  

It is known [2, p. 591 that the following “divergence geometry” 
holds in K‘.  

Project2on:Let V be a closed convex subset of @. We assume 
that, for q E A”, at least one r E V exists such that D(rllq) < CO. 

Then there is a unique r E V minimizing D(rllq).  We call this r 
the projection of q onto V and denote it by r = a( qlv). 

Projection onto a Linear Set: We say that E is a linear set in 
p if E can be represented as 

where a h / ,  bh are some constants and k ranges over a finite 
index set. For example, a straight line, a plane, and so for&, are 
linear sets. Since a linear set E is a closed convex set of &’, we 
can consider the projection onto E .  For q = ( q,; . ., q,I) E A”, let 
us calculate the coordinate components of q* = a( q1 E ) .  Since 9* 
is the solution to the minimization problem min, E ,,. D( rllq), ,by 
Lagrange’s method of indeterminate coefficients, introducing 
multipliers &, [, and letting 

I t  I t  

f ( r ) = N r I I q ) + C < r  C a r , r , + l C  rlT 
J = 1  k j = 1  

we obtain from af /ar ,  = 0 

where a = exp ( - 1 - [) and 5, , { are the numbers determined by 
the conditions: 

I 1  ,, 
“ h / q :  = ‘ A  c 4: 

J = 1  / = 1  

Pythagorean Theorgrz: Let E be a linear set in and let 
9* = n(qlE) for q E A”. Then for any r E E ,  the following equa- 
tion holds; l 

D( rIlq*) + D( q*Ilq) = D( 41s) 

Iterated Projection: Let E” be a linear set in 2 and E’ be a 
closed convex subset of E”.  Then for q E A” we have 

a(qlEl) = a(a(qlE‘))IE’) 

Now, let E be a hyperplane in E ,  i.e., E is the intersection of 
a hyperplane in R ”  and A”. E separates A” into two disjoint 
subsets, say, E -  and E ’ .  Let E’ include E.  Thus E’ is a 
closed set and E -  open, Here we consider a point q E E and a 
closed convex set V c A” and put 9* = a( 41 E ) .  An easy calcula- 
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tion shows that E' is characterized by such that 

Then we have the following Proposition. 
Proposition I :  If q* = a(qlV) ,  V c E' 

Proof: See Csiszar [3, theorem 2.21. 

In the n-dimensional Euclidean space, let con( Q',  . . . , Q"')  
denote the convex hull of Q', . . . , Q"', i.e., the minimum convex 
set including Q'; . .,en', and let Q' . . . "Q"' denote the mini- 
mum subspace including Q', . . . , Q"'. 

We now consider the problem of maximizing the mutual 
information under a linear input constraint: 

m 

r = l  

where cl; . ., e,,, are nonnegative real numbers. We denote the 
maximum by C(r)  and call it a capacity-constraint function, i.e., 

C( r) exists only for r 2 r, A min, ~, ~ ,,,e,, otherwise the set of 
p ' s  satisfying the constraint is empty. If r is greater than some 
r*, C(r) equals the capacity C of the channel Q .  It is well-known 
[2, p. 1371 that C(r )  has the following properties. 

Proposition 2: C( r) is a nondecreasing concave function. C( r) 
is strictly increasing for r ,  I r I r* and differentiable at r > TI 
except for r = r*. 

Fig. 1 shows a typical graph of capacity-constraint function. 

C 

0 r* To r 

Fig. 1. Typical graph of capacity-constraint functions 

11. PRELIMINARIES TO THE THEOREMS 
We first consider a supportive maximization problem: 

It is known [2, pp. 137-1421 that the following properties hold. 
Proposition 3: We obtain 

c ( r ) = r n i n ( F ( y ) + y r ) ,  r>c)  
7 2 0  

If, for some y 2 0, a p maximizes I (  p .  Q )  - ye( p )  and e( p )  = r, 
then I( p .  Q )  = C( r). 

Proposition 4: For any y 2 0, 

The minimum is achieved if and only if q = p Q  for a p that 
maximizes I ( p , Q ) -  y c ( p ) .  This q is unique. Moreover, a p 
maximizes I( p ,  Q )  - ye( p )  if and only if there is a constant F 

- < F ,  if p ,  = O  

Proposition 5: We have 

C ( r )  = q E a . ~ ~ . o l < r < n t  mig min max ( D ( Q ' l l q ) + y ( r - c , ) ) ,  r>r(,.  

q achieves the minimum if and only if q = p Q  for a p which 
maximizes I (  p ,  Q )  under the constraint c( p )  I r. 

From the foregoing propositions, we notice that the output PD 
that achieves C(T) can be represented as q = p Q  for a p that 
maximizes I (  p ,  Q )  - ye( p )  for some y L 0 and is unique. There- 
fore, rather than looking for an input PD, we look for an output 
PD that achieves C(r). In other words, we use the Kullback- 
Leibler divergence to clarify in a geometric way whqe the PD 
that achieves C( I-) is in the output probability space A". 

Let us first attempt to solve this problem directly using 
Lagrange's method of indeterminate coefficients Introducing 
a,  /3 as indeterminate coefficients and letting 

??I 

f( P I  = I (  P ~ Q )  + 4 P I  + B  P , ,  
, = I  

from 8 f / 8 p ,  = 0 we have 
,I I1 n1 

Q,,logQ,,- 1 Q,,k 1 p , Q , , - l + % + B = O 7  
/ = I  J - 1  I = 1  

I = 1 ; .  ' (  m .  

Although we can solve these equations to obtam p = ( p , ) ,  i f  the 
solution does not satisfy p ,  2 0 ( I  = 1,. . ., m ) ,  then it is evidently 
inadequate. What should we do when some p ,  is negative? To 
answer this question, we must use the divergence geometry to 
look directly for 4 which achieves C(r). 

From no on, the channel matrix Q is assumed to satisfy the 
condition: rank( Q )  = rn ( m I n ) .  According to this condition, 
notice that there exists the right inverse matrix R = ( R , , )  of Q 
which satisfies 

n 

Q , , R , ,  = 4, ( 2) 
/ = I  

where a,, is Kronecker's delta and Cy: I R,, = 1,  J =1; . ., n. 
Furthermore, a PD q" exists that satisfies D(Q'11q") = . . . = 

111. THEOREMS 
Now, since input PD p is in the set ( p l c ( p )  I r}, 

the corresponding output  P D  q is in V ( r ) A  
{ 414 = p Q ,  e(  p )  s r}. This condition of V ( r )  can be rewntten 
in terms of q. From q, =CyL.Ip,Q, , ,  we have p,  = E y = 1 9 / R , ,  (or 
p = q R ) ,  then 

Q"' II qO).  

Letting s, =C::,c, R , , ,  and s ( q )  ACy=,s/q, ,  we have V ( r )  = 
( q l s ( 9 )  I r} ncon(Q',. . ., Q"'). In addition, we have e, = 
Cy= ' s , Q , , .  Furthermore, we define a linear set E ( T )  by E ( T )  = 
{ qls(q)  = r}. Here we have the following theorem. 

Theorem I :  Let q" be a probability distribution equidistant 
from Q ' ;  . ., Q"'? i.e., q" satisfies D ( Q ' ( ( q O )  = . . . = D(Q"'11q"). 
If we denote 4 = m(qolV(r)), then 4 achieves the capacity-con- 
straint function C( r). 

Before this is fully proved, we show that it holds in a simple 
concrete example. If m = n and Q = I,, ( n  x n unit matrix), then 
p = q  In this case, since q O = ( l / n ; . . , l / n )  and D(qllq")= 
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log n - H( q ) ,  we have 

= log n - D( Ij11q"). 

Therefore, we see that 4 attains C(r) .  

Proof Denote j A 4R. There are two possibilities: c( j )  < r 
and e( j) = r. First, if e( j )  < r, then for any r' 2 r we obtain 
n( qOl V( r')) = m( qOl V( r)) = 4. Therefore, this is a constraint-free 
problem, namely, a problem of the channel capacity. In this case, 
we have already shown [l]  that 4 achieves C = C(r) .  

Next, if c( j) = r, without loss of generality, we can assume 
that 

If k = 1, this problem is trivial because V( r) consists of only one 
point and therefore C ( r )  = 0. Let k 2 2. 

We calculate the coordinate of I j .  Since 4 = n( q"l V( r)) is also 
the projection of q" onto the linear set 

E (  r) n con ( Q1,. . . , Q~ ) 

= ( i i i s ( q ) = r , p , =  / = 1  

from (1) we have 
f i l  

I j ,  =aq:'exp - ys, - c E,R,, * . . .  J = l  ) (3) i r = k + l  

where a = exp( - 1 - 5 )  and y ,  E , ,  5 are determined by 

s ( I j )  = r  G,R,,=O, ~ = k + l , . . . , m  1 4 , = 1 .  
,I ,1 

/ = I  / = 1  

Now, denote 

we have 

D(Q'IlIj)-yc:=F, i = l  , . . .  . m  

where F is a constant. Notice that, by Propositions 3-5, 4 
achieves the maximum of the mutual information under the 
constraint Cy: ,c,'p, I r. The corresponding set of constraints in 
k' is V ' ( r ) A  {qls'(q)ir}ncon(Q',...,Q"') . Now since 4 at- 
tains the minimum of D(qllqo) in q E V ( T )  and also in q E E'(T)  
at the same time, V ( r )  must lie on the opposite side of qn with 
respect to E ' ( r )  by Proposition 1. Therefore, we have V ( r )  c 
V ' ( r ) .  Since 4 E V ( r )  c V'(T),  we conclude that 4 achieves the 
maximum of the mutual information in V( I-). 

In the above proof, we assumed that we knew beforehand 
which j ,  are 0. As shown below, we introduce a concrete algo- 
rithm for determining which i is equal to 0. 

Theorem 2: For r, I r I r*, we can obtain 4 which achieves 
C( r) by at most m - 2 projections onto linear sets. 

At this point, it is necessary to explain Theorem 2 more 
concretely. For ro I r I r*, satisfies s( 4) = I'. Then, let En = 
E ( T ) ,  q1 = n(qol E o )  and put p' = q l R  be an input PD corre- 
sponding to 4'. If p f 2 0  for all i= l ; . . ,m ,  q1 equals the 4 
which achieves C(r). However, if p,' < 0 for some i, q1 does not 
achieve C(r).  We must therefore look for another PD. Now, 
without loss of generality, assume that 

- 

p: ,. . ., PA,, > 0 

PA,,., >. . . ?  PA, I 0. 

Thendenote E ' =  { q l s ( q ) = r } n ( Q ' -  ..-"Q'"l) and project q1 
onto E' to obtain q2 n(q'1E'). In other words, we project q1 
onto the linear set E' determined by E ( r )  and Q' which 
correspond to positive coefficients p,' of q l .  Next, let p 2  = q2R 
and check whether or not p,' > 0. If p,' I 0, exclude the corre- 
sponding Q' and obtain q' by projection. We repeat this proce- 
dure until all coefficients become positive. Since the worst case is 
that one Q' is excluded at each step, we obtain a maximum of 
m - 2 projections onto linear sets. 

Proof: The fundamental part of the proof is similar to that 
of Theorem 1. The reader may also refer to [ l ,  theorem 21. 

IV. EXAMPLES 
Example I 

, c,=O, c2=1,  c 7 = 2 .  

We look for the maximum value of I ( p , Q )  = H ( p ) ,  the en- 
tropy of p .  In this case, since the j which achieves the maximum 
always lies in the interior of con(Q',Q*,Q') = 6 we can obtain 
the following representation by Lagrange's method of indetermi- 
nate coefficients (Fig. 2): 

and define a hyperplane E'(I') by 

Since 4, = aqi'exp( - ys,'), J =1; . ., n ,  from (3), we obtain 4 = 

number of symbols). Since i -r+JGiFSF 

c ( r ) = H ( j ) = l o g a - l + y r ,  osrI1, 
n(qo lE' ( r ) ) .  Let 1,2 be two elements chosen arbitrarily from the 
set {l; . ., m }  (and renumbered for the sake of reducing the where 

7 - 3 r  + JiTiTZF 
I =  

2r 2(2- q2 y = log 
D(Q'Il4) - D(Q'llS) 

,I Q =  1/6 2/3 1/6 , c l = 0 , c , = 1 , c 7 = 2  I 1/6 1/6 2/3 J 
Thus we have q0 = (1/3,1/3,1/3). Letting 4 = n( qOl V( r)) 

and j = IjR, we find by a simple calculation that jI > j 2  > j 7  

= D(Q'lld') - D(Q'IId') + Y 

= y( c; - c;) 

/ = 1  
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V. CONCLUSION 
In this correspondence a geometric method for computing a 

capacity-constraint function C( r) is considered. The K-L diver- 
gence, having properties like a metric between two P D s  is used 
to look for the output PD that attains C(r). It has been shown 
that C(r )  is attained by the projection of q” equidistant from 
each row vector of Q onto the set of P D s  satisfying a given 
constraint condition. Moreover, the PD attaining C(r) is ob- 
tained by using Lagrange’s method of indeterminate coefficients 
at most m - 2 times. We would like to be able to attack the case 
where the rank assumption is not valid. More study is needed to 
determine whether this geometric method can be applied to 
compute the rate-distortion function R( D )  directly. 
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Fig. 2. Capacity-constraint function of Example 1 

Fig. 3. Capacity-constraint function of Example 2. Solid curve is obtained 
by using (4) and (5). Dashed curve in [O. r] (resp. (r.11) is obtained by 
applying (5) (resp. (4)) beyond limit. 

always holds. Therefore, depending on whether j 3  is positive or 
not, (i lies in con(Q’, Q2, Q 3 )  or in con(Q’, e’). Then we have 
the following representation (Fig. 3): 

where 

1 i - r + 4 i 3 + 6 r - 3 r 2  

2 2 ( 1 + r )  
y = - log 

a-  ‘=expy+exp(-y)+exp(-3y)  

and rl is the solution in the interval (0,l) of 

- 1 + r + 413 + 6 r  - 3 r 2  1 + ,/E r, = 0.264. =- 
2(3 - r) l o  ’ 

F1(2/3,1/6,1/6) is the entropy of the PD (2/3,1/6,1/6). 
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More on the Decoder Error Probability for 
Reed-Solomon Codes 

KAR-MING CHEUNG 

Ah?ruc?-McEliece and Swanson offered an upper bound on P E ( u ) ,  
the decoder error probability for Reed-Solomon codes (more generally, 
linear maximum distance separable codes), given that U symbol errors 
occur. Their upper bound is slightly greater than Q, the probability that a 
completely random error pattern will cause a decoder error. We use a 
combinatorial technique similar to the principle of inclusion and exclusion 
to obtain an exact formula for P E ( u ) .  The PE(u)’s for the (255,223) 
Reed-Solomon code used by NASA, and the (31,15) Reed-Solomon code 
(JTIDS code) are calculated using the exact formula and are observed to 
approach the Q’s of the codes rapidly as U gets large. An upper bound for 
the expression I( PE( u ) / Q )  - 11 is derived and subsequently shown to 
decrease nearly exponentially as U increases. 

I. INTRODUCTION 
We begin with the following definitions. Let C be a linear code 

of length n, dimension k ,  and minimum distance d. Let q be a 
positive power of a prime. An (n, k ,  d )  linear code C over GF( q )  
is maximum distance separable (MDS) if the Singleton bound is 
achieved; that is, d = n - k + 1. A code is t-error correcting if for 
some integer 1, 2t  I d - 1. 
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