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Correspondence 

On the Practical Implication of Mutual Information for 
Statistical Decisionmaking 

Fumio Kanaya and Kenji Nakagawa 

Abstruct -A basic mathematical function that conjoins the two key 
conceptions of mutual information and Bayes risk is defined. Then 
based on that function, some asymptotic theorems that verify an impor- 
tant implication of mutual information in the context of practical 
Bayesian decisionmaking are proven. 

Index Terms -Rate-distortion theory, statistical decision theory, Bayes 
risk, mutual information, rate-distortion function. 

I. INTRODUCTION AND MOTIVATION 

Mutual information that describes the amount of information 
one random variable gives about a second random variable is 
one of the most fundamental information measures in informa- 
tion theory. In this discipline the concept of mutual information 
has emerged in conjunction with efficient coding of sources and 
their reliable transmission over noisy channels. On the other 
hand, it has also been known for some time that the concept of 
mutual information is related closely to the discipline of statisti- 
cal decision theory because in the context of statistical decision- 
making, it is common to utilize any information that is provided 
by an observable random variable about the unknown true value 
of an underlying random parameter. In the light of certain 
common aspects emerging from the fundamental conception of 
mutual information, it is fairly reasonable to attempt to look at 
these two different disciplines from a unified perspective. This 
point is supported, for instance, by Berger’s statement: “Rate 
distortion theory provides knowledge about how the frequency 
of faulty categorization will vary with the number and quality of 
the observations. More importantly, it also gives insight into 
what set of observations would provide the most information 
about the objects in question relative to the criterion of proper 
categorization and, therefore, is of potential value in the design 
of efficient pattern recognition devices” [l, p. 91. This statement 
raises the possibility that the rate distortion theory in the field 
of source encoding is applicable to the basic statistical decision 
problem of pattern recognition. 

However, to our knowledge, such speculations seem to have 
remained heuristic, and thus it seems worthwhile to justify them 
by mathematically rigorous arguments. This is the motivation of 
our work. 

In the subsequent arguments we deal with the aforemen- 
tioned interdisciplinary problem between information theory 
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and statistical decision theory in rigorous mathematical formula- 
tions. First of all, we define a basic mathematical function to 
formulate a certain critical relationship that holds true between 
the amount of information which is contained in the observa- 
tions available to a decisionmaker and the Bayes risk that is 
achievable in the decisions made by utilizing these observations. 
Then, after demonstrating some major properties of this basic 
function, we prove two main theorems of this correspondence: a 
decisionmaking theorem and its converse. By the former theo- 
rem one is guaranteed that when the length of the decisionmak- 
ing procedure is sufficiently large and a proper observation is 
used, the probability of the actual average loss being greater 
than a certain prescribed value goes asymptotically to zero. 
Proper observations can necessarily be found among those that 
contain at least the amount of information required by the basic 
function. Its converse theorem asserts the negation of the con- 
vergence to zero if the amount of information provided by the 
observations is less than a certain permissible minimum bound 
dictated by the basic function, whatever decisionmaking proce- 
dure one devises. Finally, we give one theorem that suggests that 
the speed of this convergence is exponential for a sufficiently 
large sample size. 

11. DEFINITION OF THE BASIC FUNCTION 
AND ITS PROPERTIES 

Let S be an unknown parameter taking values in the finite set 
0 =(e}, and let X be a random variable taking values in the 
finite set E = { x ) .  It is assumed that a prior distribution P(0)  
on 0 and a conditional probability matrix W =  {W(xle): 0 E 0, 
x E E} are given. Hence, the joint distribution Pr[S = 0, X= x ]  
= P(O)W(xlB). After having observed x, one has to choose an 
action a from a finite set &={a}. Without loss of generality, 
we assume that the loss function p: 0 X d+ R+ a[O,m) satis- 
fies the following condition: 

ayJ(e,a) = 0, ve E 0. ( 1 )  

Given a decision function $: Z+ d, risk is defined by 

r ( $ , p ~ + ’ )  = C C ~ ( e ) w ( x I e ) p ( w ( x ) ) .  (2) 
B € @ x E %  

Let W be the set of all possible decision functions. Then, the 
minimum attainable risk defined by the subsequent equation is 
referred to as the Bayes risk: 

r ( P , W ) P  min r ( $ , P , W ) .  (3) 
tJSP 

In the context of statistical decision problems, one can obtain 
information about 0 by observing x. This information is then 
used for making decisions. The amount of information that is 
provided by the observations about the unknown parameter is 
given by the well-defined mutual information between S and X, 
that is, 
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Now we are ready to define a basic mathematical function 
R(P ,  L). For a fixed nonnegative real number L,  denote by TL 
the set of all L-admissible conditional probability matrices, i.e., 

T a ( W :  r ( P , W ) < L } ,  V L ~ O .  (5) 
Then, the basic function R ( P ,  L )  is the function that is given by 
the solution of the following extremum problem: 

R ( P , L ) ~  min z ( P , w ) ,  V L ~ O .  (6) w € rv, 
It is evident from assumption (1) that the set TL is nonempty 

for all L 2 0. It is also apparent that the set FL is compact, 
since TL is the inverse image of a closed interval [O, L ]  under a 
continuous real-valued function r ( P , W )  of W. Thus, the exis- 
tence of the basic function R ( P ,  L )  is ensured for all L 2 0 
because the continuous real-valued .function Z(P, W )  must as- 
sume a minimum in any nonempty compact set of W. 

Apparently in definition R ( P , L )  is very similar to the well- 
known rate distortion function in the field of source encoding. 
However, R ( P , L )  is more difficult to evaluate because the 
Bayes risk r ( P , W )  is not a simple average distortion, but is 
itself the solution of a different functional optimization problem 
that is essential to any decisionmaking procedure. 

We are now in the position to demonstrate fundamental 
properties of R ( P ,  L). First of all we give the following lemma. 

Lemma 1: For each decision function $ E V, let R ( P ,  I,!I, D )  
be the rate-distortion function associated with the hypothetical 
distortion measure d,: O x Z+ R+ that is defined as 

ve E 0, v x  E x. d,( e ,  x ) 4% p (  e,  $ ( x ) ) , (7) 
That is, let R( P ,  $, D )  be the solution to the following optimiza- 
tion problem: 

K,(+) (w:  1 P ( e ) w ( x i e ) d , ( e , x )  5 D , 
(8) f l S @ X € E  

R ( P , $ , D ) =  min Z ( P , W ) .  
w 6 TDv,cS) 

R ( P , L ) =  min R ( P , $ , L ) ,  V L 2 0 ,  VPonO. (9) 

Proof: Let 'yL be the union of a collection of sets (VL($): 

VE\lr 

i 
Then, 

$ E 91, i.e., 

The proof immediately follows from the proposition that 
equation % =  YL holds for the set YL that is previously 
defined by (5). Since it is apparent that YL2YL, proof is 
completed if we demonstrate the opposite relation. 

Given any conditional probability matrix U E YL, it follows 
from the definition of yL that there exists a nonempty subset 
A c W consisting of every decision function $ that satisfies the 
following: 

P ( e ) u ( x l e ) d , ( e , x )  5 L .  (11) 
f l € @  X € X  

Since it is obvious that A is a finite set, a member S must be 
found in it that satisfies the following minimal condition: 

e € @  x ~ Z  
c c P ( e ) u ( x l w , ( e > x >  

I P ( e ) u ( x l e ) d , ( e , x ) ,  V $ E A .  (12) 
f l € @ X € E  

Thus, considering the definition of d,(O, x) and of A,  we obtain 

L 2  C P ( e ) u ( x l e ) d , ( s , x )  

Since this implies that U E TL, it is proved that YL c YL. 
This lemma assures us that the function R ( P , L )  can be 

computed by determining the minimum among a finite-number 
of rate-distortion functions, because (W\Ir( is equal to ldllzl, 
which is obviously finite, Here we denote the cardinality of a set 
by 1.1. Note that in the aforementioned case, respective distor- 
tion measures are induced from one and only one loss function 
p(0 ,  a )  through decision functions as defined by (7). Next, we 
demonstrate an important property of the basic function R ( P ,  L )  
that reveals the possibility of its evaluation without explicitly 
undertaking the often very difficult and impractical solution of 
the Bayes risk for a decision problem. 

Theorem I :  Let R ( P ,  p ,  0)  be the rate distortion function that 
regards 0 and d as a hypothetical source alphabet and repro- 
duction alphabet, respectively, with the loss function p(0, a )  
adopted as the hypothetical distortion measure between these 
two alphabets. Then the following equality holds: 

R ( P , L )  = R ( P , p , L ) ,  V L  > 0 ,  V P  on 0. (14) 

This theorem can be derived as a rather immediate conse- 
quence of both the last lemma and Stjernvall's dominance 
theory [2]. Prior to proof of this theorem, we will state the 
relevant definitions and theorem given by Stjernvall in appropri- 
ate terminology. 

Definition 1: Let d ( x , y )  be a distortion measure between 
finite alphabets .!X={1,2;..,1ZI} and 9=(1,2;..,IW/D. We 
can define the vectors as 

d(  Y )  = (d(1,  Y ) ,  4 2 ,  Y ); . . ,d(lXl, Y ) ) ,  VY E 9. 
Definition 2: Let the convex hull of a set d be denoted by 

the symbol c o n v d .  The characteristic set @(d)  of the distor- 
tion measure d x ,  y )  can then be defined as 

@( d )  = convb(  d )  + Z, 

where 

7 q d )  = ( d ( y ) :  Y € 9 1  
and 

X =  {k: k x  2 0,Vx E 2). 
Stjemuall's Theorem [2, p .  SOOJ Assume the two distortion 

measures d,: X x 9- R' and d,: LT x $2 --+ R i  satisfy the 
condition B ( d , )  c B(d , ) .  Then, for all distortion D > 0 and all 
proability distributions P on X 

R ( P , d , ,  0 )  2 R ( P , d , ,  D ) ,  

where R ( P ,  d ,  D )  denotes the rate-distortion function associated 
with the distortion measure d. 

Now we prove Theorem 1. 

Proof of Theorem I :  Let the distortion measure defined by 
the loss function p(0,Cr) be denoted by do: 0 X d+ R +  and 
the distortion measure defined by p(0, $(x)) for any given $ be 
denoted by d,: O X $(.!X)+ R+,  where $(E) denotes the 
image of X under the mapping 4: Z-+ d. Then it is apparent 
from Definition 2 that B ( d , )  c B(d , ) ,  since $(XI c d for all 
.!?Z and all $ E W. Thus in the light of Stjernvall's Theorem, for 
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all E and all I) E ?, 

R ( P , I ) ,  D )  2 R ( P , p ,  D ) ,  V D  > 0 ,  V P  on 0. (15) 

Now, consider some X with IX121dl. It is then obvious 
that a decision function 4 must exist for which b ( X ) =  d 
holds. We now prove that at least for this 4 

R( P , $ ,  D )  = R( P , p ,  D ) ,  V D  > 0 ,  V P  on 0. (16) 

For the purpose of this proof let WO be the optimal W that 
achieves R(P,p ,  D). Then 

C C P ( e ) w o ( a l e ) p ( e , a )  I D ,  (17) 
B E @  a € &  

2 R ( P , 4 , D ) .  (22) 
Thus, by (22) and (15) we obtain (16). Finally it follows from 
(151, (161, and Lemma 1 that 

R ( P ,  L )  = R ( P , 4 ,  L )  = R ( P , p , L ) ,  VL > 0, V P  on 0. 

(23) 
This completes the proof of Theorem 1. 

By virtue of this theorem, it becomes possible to reduce the 
computation of the basic function R ( P ,  L)  to that of the well- 
defined rate-distortion function in information theory, which 
circumvents the cumbersome solution of the Bayes risk. Convex- 
ity, continuity and strictly decreasing property of the rate-distor- 
tion function is guaranteed also for the basic function R ( P ,  L )  
by the last theorem. 

As a final consequence of this section, we give an important 
property of the stochastic matrix that attains a point on the 
R ( P ,  L )  curve. It is evident from the argument previously made 

on the existence of the basic function that for all L 2 0 there 
exists at least one stochastic matrix that achieves a point 
(L ,  R ( P ,  L)) on the R ( P ,  L )  curve. However, it is to be noted 
that the aforementioned optimum stochastic matrix is not auto- 
matically computable by way of the extremum problem (6) that 
defines the basic function R ( P ,  L), because the cardinality of 
the observation data set .!Z is not specified and hence it may be 
an  arbitrary finite integer. Now, by means of the next theorem, 
which can be easily obtained from the proof of Theorem 1, it is 
assured that we can find at least one optimum stochastic matrix 
achieving the point (L ,  R( P ,  L)) within the L-admissible set 
comprising only those matrices of a fixed size of I 0 l X  Id[. 

Theorem 2: To every stochastic matrix W: 0 - X  that 
achieves a point (L ,  R( P,  L ) )  on the curve of R ( P ,  L )  under the 
condition that 1x1 > Id[, there exists a corresponding stochas- 
tic matrix V: 0 + 9 such that I/ also achieves the same point 
and 191 = Id1 holds. 

By combining this theorem with Theorem 1, we are led to the 
conclusion that every stochastic matrix achieving a point on the 
rate-distortion R( P,  p ,  L )  curve is a representative of the set of 
all solution matrices to the extremum problem (6) that defines 
the basic function R ( P ,  L ) .  It should be noticed that the random 
variable Y that takes values in fV and is specified by the joint 
distribution Pr[S = 0,Y = y ]  = P(O)V(yle) is actually a sufficient 
statistic of the corresponding observed random variable X for 
the unknown parameter S (see, e.g., [4, pp. 303-3061). 

111. MAIN THEOREMS 

The basic function specifies by definition the minimum possi- 
ble amount of information that must be given by the observa- 
tions about the unknown parameter for one to achieve the 
Bayes risk not greater than the prescribed value L. The purpose 
of the subsequent argument is to demonstrate the practical 
implication of the basic function R ( P ,  L )  through proving main 
theorems that relate it to the asymptotic behavior of an actual 
decisionmaking procedure. 

Now consider an actual decisionmaking context in which a 
component statistical decision problem having identical generic 
structure is repeated n times. We assume that there is no 
relationship among the n repetitions. As a practical matter, the 
question of major interest to the decisionmaker is the actual 
(random) averaging loss that accrues from the real decisionmak- 
ing procedure. Suppose that a compound decision function 
0": X" - d" is used. Then the actual average loss having 
resulted from the n decisions is given by 

where an n-length sequence of observed data is denoted by a 
vector x = x l x 2  . . . x ,  E 2"" and an underlying sequence of 
true parameters is denoted by a vector 0 = Ole2. . . O n  E 0". We 
also use for a compound decision function notation W " ( x ) =  
Wl(x)q2(x). . . ?Jx) E d". Henceforth, we denote by E,.,, .[.] 
the mathematical expectation of a random variable with respect 
to the joint distribution Pr[S" = 8, X" = x] = P"(B)W"(xle) of 
random variables S" and X". 

Prior to stating the main theorems, we give two preliminary 
lemmas needed for their proof. 

Lemma 2: To every R satisfying the condition that R ( P ,  L )  I 
R I log 101, there exist a stochastic matrix W :  0 + X satisfying 
Z(P,W)= R and, for every positive integer n,  a compound 

7 -  
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decision function 9": X" - d" such that 

E s . , x . [ f " ( @ , * " ( x > ) l ~  L .  
Proof Assume for the compound decision function 9" a 

simple symmetric rule +"(x) = ~ ( x , ) + ( x , ) .  . . 4 ( x n )  with each 
component 4 being a Bayes rule against P that is determined 
by (3). Then the lemma follows immediately from the definition 
of the basic function R ( P ,  L )  and the hypothesis that an identi- 
cal statistical decision problem is repeated independently. 

Lemma 3: Suppose that for a given positive integer n there 
exist a stochastic matrix W: 0 .5E" and a compound decision 
function 9": X" + d" such that 

Then we must have 

I ( P , W ) > R ( P , L ) .  

Proof First it can be shown by some calculation that for 
every positive integer n and every compound decision function 
9": X" --f d" 

where D, represents the next distortion associated with a prop- 
erly defined stochastic matrix w: @ + d 

D , P  c c P ( ~ ) w ( a l q P ( e , o .  
8 € @ a ~ d  

Hence, by using a data processing lemma (see, e.g., [3, pp. 
55-56]) and a rate-distortion theorem (e.g., [ S ,  Theorem 9.2.1]), 
we can easily obtain 

I ( P , W )  2 R( P , P ,  E s . , x . [ P " ( ~ , ~ " ( x > > ] ) .  (25) 
Then it follows by the strictly decreasing property of the rate- 
distortion function R ( P ,  p ,  D )  and from the postulate 
E,n,Xn[pn(e, W"(x))l I L that 

I ( P , W ) ? R ( P , p , L ) .  (26) 
Finally the lemma follows immediately from both (26) and 
Theorem 1. 

Now we are ready to prove two main theorems. First we prove 
the decisionmaking theorem. The significance of this theorem is 
that it ensures that the probability of averaging loss greater than 
some prescribed value L goes asymptotically to zero for suffi- 
ciently large values of n ,  if one uses proper observations that 
yield the amount of information about unknown parameter not 
less than is required by the basic function R ( P ,  L). 

Theorem 3 (Decisionmaking Theorem): T o  every R satisfying 
the condition that R ( P ,  L )  I R 2 log 101, there exists a stochas- 
tic matrix W :  0 + X satisfying Z(P, W )  = R and a sequence of 
n-length decisionmaking procedures (9": X" + d"), n = 
1,2, . . . such that for every 7 > 0 and E > 0 

Pr[p"(e ,P"(x))  I L + 771 2 I -  E ,  

whenever n 2 n0(77,E). 

x = xlx2  . . . x ,  E X" we denote its joint type by 
Proof For a pair of sequences ~ = B , B 2 ~ ~ ~ 8 , , E O "  and 

1 1 "  
- -N(@,xi%x)  8 -  C s ( ( ~ , ( e , , x , ) ) ,  

r = l  

v(e, x) E o x x, (27) 

where S(a,  b )  is defined as 

Then for any given prior P on 0 and stochastic matrix W: 
0 + X we denote the set of all jointly typical sequences by (cf. 
t31) 

V ( B , X ) E @ X . ~ E " } .  (28) 

Here the additional requirement must be met such that 
N(B, xle, x) = 0 whenever P(B)W(xlB) = 0 and the sequence (6,) 
is chosen such that 

S ,  --f 0, h . 8 ,  - m ,  as n -m. (29) 

Now, according to Lemma 2, we can choose W: 0 + X and 
9": X" - d" such that I ( P , W ) =  R and 9 " ( x ) =  c#~(x , )  
~ $ ( x , )  . . . 4 ( x , )  with components 4 satisfying & E 

P(B)W(xlB)p(B,+(x)) i  L.  Then it follows from (27) and (28) 
that for every (e, x) E TFwls, 

where we put 

i 

On the other hand, by using Chebyshev's inequality, it is easily 
shown that 

Hence, considering (29), the theorem follows immediately from 
(30) and (31). 

Due to the general feeling that in the practical statistical 
decisionmaking case the stochastic matrix W cannot be selected 
arbitrarily as opposed to the test channel in the rate distortion 
case, this theorem would not be considered of so much practical 
significance. However, it should be noticed that in the context of 
the practical pattern recognition, the problem of feature selec- 
tion has long been recognized and intensely studied. (For an 
enlightening perspective of this field, see e.g., [6]J It could be 
considered from the statistical decision theoretic viewpoint that 
the essence of this problem virtually consists in the selection of 
the optimal stochastic matrix W within the admissible set that is 
determined by some practical constraints. Thus, for instance, it 
would be possible for this theorem to help prompt a new idea of 
optimal feature selection. 

Next we prove the converse to the decisionmaking theorem. 

Theorem 4 (Conuerse Theorem): For every stochastic matrix 
W ,  0 - X subject to the constraint that Z(P, W )  < R ( P ,  L),  
there exists a positive number p ( P ,  W,  L )  such that 

Pr[p"(e,*"(x)) > L ] 2 P ( P , W , L ) ,  

for every positive integer n and every n-length decisionmaking 
procedure W': X" + d". 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 4, JULY 1991 1155 

Proof: Suppose we are given an arbitrary compound deci- 
sion function Q": E" -+ d". Then we have 

A P f l ( e ) w f l ( x l e ) p f l ( e , Q f l ( x ) )  

- < (1 - Pye)wyxie))r .  

+ P M  P f l ( e ) w n ( x l e )  

= L + ( ~ ,  - L )  P n ( e ) w f l ( x l e ) .  

(e,x) 

p n ( e , w ( x ) ) >  L 

pn(e,.rlrn(x)) > L 

p f l ( e , * n ( ~ ) ) >  L 

Hence, for every L < pM, 

~ r [ p " ( e , Q " ( x ) )  > L ] O  Pfl(e)wfl(xle) 
p"te,P"(x))> L 

. (32) 
~ S ~ , , . [ P " ( ~ ? Q " ( ~ ) ) l -  L 

2 
p M - L  

On the other hand, it follows from Lemma 3 that for every 
positive integer a ,  we must have 

Z ( P , W ) 2 R ( P , E , , , , , [ P " ( e , Q f l ( x ) ) l ) .  (33) 

R ( P , L )  > I ( P , W ) ,  (34) 

R ( P , L )  > Z ( P , W )  2 R ( P , E , , , , , [ p " ( 8 , Q f l ( x ) ) l ) .  (35 )  

Since by postulate of this theorem 

it follows from the last two inequalities that 

Let A ( P ,  R )  be the inverse of the basic function R(P,  L) .  Then 
by using the strictly decreasing property of R(P,  L) ,  it follows 
from the last inequality that for every n and Q": X" -+ d", 

L < A ( P , Z ( P , W ) )  I Ey,xn[~"(e ,Q"(x) ) ] .  

Combining this inequality with (321, we have 

The converse theorem then follows from this inequality immedi- 
ately if we put p ( P ,  W,  L )  = ( A ( P ,  Z(P, W ) ) -  L ) / ( p M  - L).  

According to the converse theorem one can not always be 
guaranteed of achieving the average loss of the prescribed value 
L as the length n goes to infinity if one utilizes for decisionmak- 
ing the observations that provide less amount of information 
about the unknown parameter than is dictated by the basic 
function R ( P ,  L) .  

Consequently, through proving these two theorems it is possi- 
ble to verify the practical implication that the mutual informa- 
tion has in the context of actual decisionmaking procedure. 

Finally we give one theorem that concerns the speed of 
convergence in probability. We henceforth denote by D( PllQ) 
informational divergence between two distributions P and Q on 
a finite set X, i.e., 

and also denote by D(VI(WIP) conditional informational diver- 
gence between two stochastic matrices V: X+ 9 and 

W: X + W ,  i.e., 

D(VIlWIP) 4 P(x)D(V(.lx)llW(.Ix)). 
X € Z  

Here notations V(.ln) and W ( . l x )  have been used for row 
vectors of respective stochastic matrices. 

Theorem 5: Let L be a positive number less than pM, and 
W: 0 -+ X an arbitrary stochastic matrix satisfying Z(P, W )  2 
R(P, L - 7) for some arbitrarily small 7 > 0. Then for every 
compound decision function 8": X" --f d", 

= -  inf D(VIlW1P). 

Proof: Let I/: 0 .+ 9" be an arbitrary stochastic matrix such 
that Z(P, V )  < R( P, L) .  According to Theorem 4 we have for 
any given Q": X" -+ d", 

v: I ( P , V ) <  R ( P , L )  

P f l V n ( { ( e , x ) :  p f l ( e , Q f l ( x ) ) > L ) )  > ~ ( P , v , L ) > ~ ,  

for n = 1,2,  . . . . (37) 

Therefore, it follows immediately from Stein's Lemma (see., 
e.g., [3, p. 281) that for every S > 0 and sufficiently large n 

1 
- log pnwfl( { (e,x):  p n ( e , 8 f l ( x ) )  > L } )  

> - D(P X VIIP X W )  - 6 .  (38) 

Here P x V and P X W designate the joint distributions 
P(B)V(xJB) and P(B)W(xlB), respectively. Thus, considering the 
fact that by definition 

Pr[p"(e,W"(x)) > L ]  = P f l w f l ( { ( e , x ) :  p f l ( e , Q f l ( x ) )  > L ) ) ,  

we obtain for every 8": X" -+ d" and sufficiently large n 

1 
- l o g P r [ p f l ( e , Q f l ( x ) ) > L ] 2  -D(VlIWlP)-S, V 6 > 0 .  
n 

(39) 

Here we have used the identity D(P X VllP X W )  = D(VIlW1J'). 
Since V was arbitrary subject to the constraint that Z(P, V) < 
R(P,  L )  and 6 > 0 can be made arbitrarily small, proof follows 
immediately from (39). 

It should be noted that by nonnegativity of informational 
divergence and the postulate Z(P, W )  2 R(P,  L - 7) for some 
7 > 0, inf,D(VIIWIP) is guaranteed to be strictly positive in the 
last theorem. 

IV. CONCLUSION 

We have presented an attempt to look at the two different 
disciplines of Shannon theory and Bayes statistical decision 
theory from a unifying perspective. We have viewed as key 
notions the mutual information in the former and the Bayes risk 
in the latter. First we have defined a basic mathematical func- 
tion that conjoins them. Then, through mathematically rigorous 
arguments based on major properties of this basic function, we 
have proved a decisionmaking theorem and its converse which 
enables us to verify that even for actual statistical decisionmak- 
ing procedures, the mutual information has important pragmatic 
implications, as has long been recognized in conjunction with 
source and channel coding procedures. 

1 
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On the Wavelet Transform of Fractional 
Brownian Motion 

J. Ramanathan and 0. Zeitouni 

Abstract -A theorem characterizing fractional Brownian motion by 

Index Terms -Wavelet transform, fractional Brownian motion. 

the covariance structure of its wavelet transform is established. 

I .  INTRODUCTION 

The wavelet transform of a function f(t) is defined by the 
formula 

where g ( t )  is a fixed function, t E R, and a E R+. This transform 
yields a joint time-scale representation of the original input 
function that has been of great recent interest. (See, e.g., [l], [2] ,  
and [4]). 

In a recent correspondence, Flandrin [3] proposed the use of 
the wavelet transform to analyze the behavior of fractional 
Brownian motion, a highly nonstationary random process. (For a 
background on fractional Brownian motion and some of its 
applications, see [SI and [6]). The wavelet transform of a stochas- 
tic process X ( t )  is a random field Y X ( t , a )  on the upper half 
plane. The process t - x X ( t )  can be thought of as the compo- 
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nent of the original process at scale a. A consequence of 
Flandrin’s computation is that fractional Brownian motion is 
stationary at each fixed scale. In particular, when X ( t )  is a 
fractional Brownian motion, the covariance of the process t rf 
x X ( t )  is of the form 

E [  K X (  t )  % X ( s ) ]  = uAp - , ( 
where p is a positive definite function determined in an explicit 
manner by the order or the fractional Brownian motion and the 
defining function g ( t )  of the wavelet transform. This fact is used 
by Flandrin to make rigorous sense of the spectral content of 
fractional Brownian motion. 

It is natural to ask whether there are other Gaussian pro- 
cesses whose wavelet transforms have this natural covariance 
structure. In addition, are there any Gaussian processes whose 
wavelet transform is stationary with respect to the affine group 
(i.e., the statistics of the wavelet transform do not depend on 
translations and dilations of the process)? The purpose of this 
paper is to point out that the answers to both these questions 
are negative. In particular, fractional Brownian motion is char- 
acterized by the property that its wavelet transform has the form 
shown above in (1). A consequence is that there are no nontriv- 
ial Gaussian processes on the real line whose wavelet transform 
produces a random field that is stationary with respect to the 
affine group. It should be remarked that the results presented 
assume some fairly nonrestrictive growth conditions on the 
covariance of the process X(t) and the kernel g ( t )  used to 
define the wavelet transform (see Remark 2 at the end of the 
correspondence). 

11. A CHARACTERIZATION OF FRACTIONAL 
BROWNIAN MOTION 

Let X ( t )  be a Gaussian random process defined for t E R  
such that the covariance R(s,  t )  = E [ X ( s ) X ( t ) ]  is continuous 
and satisfies 

R(0,O) = 0 

where N E Z is fixed. In addition, we also impose the following 
conditions on the analyzing function g(t) :  

a) /?Ag(t)I(1+ It12)N/2dt <m, 

b) ~~~I6(5)l2/151d5 <m, and 
c) 6 is smooth and has a simple zero at the origin. 

(The Fourier transform of g is denoted by 6.) The growth 
conditions for the process X ( t )  and the analyzing wavelet g ( t )  
insure that the wavelet transform produces a random field with 
finite covariance. 

Theorem: Suppose the wavelet transform E X  satisfies 

E [ ~ X ( t ) ~ X ( s ) ] = a A p  ( Y )  - , 

where A E R and p is a positive semidefinite function on the real 
line. Then X ( t )  is fractional Brownian motion of order H = 

(A - l)/Z. In particular, A E (1,3). 
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