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p do not contribute to the partial derivative. Standard differentiation 
then results in (for 1 5 j 5 nit - 1) 

L f l  

* *  .[Q(6' - g ( . ~ ~ , 1 . ~ ~ ~ 3 2 . . . . . , ~ , j , . ~ ~ . . . ~ , , r ,  ) )  
*** 

- ( ) (e -g( ." . l . l /2 ."=. , l ; , ) ,  . " ' . / ' , , / , , ) ) ] .  

where * denotes deletion, ** denotes replacing I , $ , ?  with , r 8 , ,  and 
* * * denotes replacing sr j l  with .I 

By substituting the previous expression for the partial derivatives 
into (A.2), we may write 0 as 

) .  

where qt is given by 

* * *  . [ Q ( O  - g("'l,l . . I ' L 1 2 .  ' ' ' . J ,  , 1  . ' ' ' .,I,?, ),, ) )  

Now letting 

we have that 

z = 1  J - - 3  

when the integrals exist, and where once again * denotes deletion. To 
arrive at this expression we note that the two inner summation terms 
which are enclosed by the absolute value symbols each corresponds 
to an iterated Stieltjes integral (when it exists) of the function 
Q ( H  - g( . .  ., . . . , .)). The derivative term that appears immediately 
before the inner integral arises due to the (Z~ ( ,+~ ]  - s,) difference 
term that appears in the denominator of the q z  expression, coupled 
with the fact that the first inner summation of 7 1 ~  is evaluated at 
z , ( ~ + ~ )  while the second inner summation term of qz  is evaluated 
I*>. The outer summation term of qt is of the form of a Riemann 
sum and hence results in the outer integral in expression for A. 
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On the Converse Theorem in Statistical Hypothesis Testing 
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AbstractSimple statistical hypothesis testing is investigated by making 
use of divergence geometric method. The asymptotic behavior of the 
minimum value of the second-kind error probability under the constraint 
that the first-kind error probability is bounded above by exp(-r,rr) i s  
looked for, where I' is a given positive number. If r i s  greater than 
the divergence of the two probability measures, the so-called converse 
theorem holds. It is shown that the condition under which the converse 
theorem holds can be divided into two separate cases by analyzing the 
geodesic connecting the two probability measures and, as a result, a lucid 
explanation is given for Han-Kobayashi's linear function f ,  (S). 

Index Terms-Hypothesis testing, randomized test, information geom- 
etry, geodesic, power exponent, converse theorem. 

1. I N 1  KODUCTION 

In this investigation of simple stati\tical hypothesis testing, let I! be 
a set consisting of nt + 1 natural numbers, i.e., ( 2  = {O. 1.. . . r t i  }, 
n i  2 1. Define two sets 3 and 21 of probability measures on I1 as 
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A A { p  E b ) p ( i )  > 0, i E fl}. (2) 

For two probability measures p .  q E b, we say that p is dominated 
by q and denote it by p << q if q ( i )  = 0 always implies p ( i )  = 0, 
i E n. 

Let us consider hypothesis testing for two probability measures 
P O .  yl E A. Let HO be the null hypothesis that po  gives the 
probability of an i.i.d. ?,-sequence diln E L"', where 0" is the 
Cartesian n-product of 0, and let H1 be the alternative hypothesis 
that p l  gives the probability. A randomized test function of hypothesis 
testing is defined as a mapping from n" to the closed unit interval 
10. 11 = { rJO I s 5 l}. We assume in this correspondence that the 
term "test function" always indicates randomized test function. 

For a test function & : niln + 10, I], the first-kind error probability 
a ( & )  and the second-kind error probability J (&)  are defined by 

n ( d n )  2 C (1 -o , (d j" ) )po( iJr1) .  (3) 

gj(on) 2 07, (dn ) P I  (dft ) -  (4) 

& " t a n  

c"ERn 

where p o ( j " )  2 p ~ ( ~ ~ ) . . . p o ( - . ' , ~ )  for U?'' = ii'l "'dn E Cl", 

Under the constraint n(ol,) 5 a ,  we say that d: is the most 
powerful test function if (3: satisfies n(o: ) 5 o and 3 ( 4  ) I j ( d r l )  
holds for any on with n ( d , )  5 a.  Our main problems are to 
determine the most powerful test function 6; under the constraint 
a(@, )  I ex-p(-rn) where r is a given positive number, and 
calculate - :log (1 - 3(0: ) )  
and represent them in terms of the Kullback-Leibler divergence. The 
above limiting values are called the power exponents of hypothesis 
testing. 

The power exponent for a nonrandomized test under the constraint 
that the first-kind error probability is bounded above by a positive 
constant is calculated by Stein's lemma [4], which asserts 

d, E n, J = 1 . ' " . 7 2 .  

- :log d(o:) or 

( 5 )  
1 

lim --log ) 3 ( @ : )  = D(po(1p1 ). 

Blahut [3] and Han-Kobayashi [5]  investigated the case where 
a(@,) 5 exp ( - - r n )  and obtained the following results. Both of 
them considered nonrandomized tests. 

11-x 11 

Theorem (Blahuf [.?I): If r < D ( p l  l lpo),  

liin - 
12 - x 

where o2 is the variance of a random variable log ( p l ( i ) / p o ( i ) )  with 
respect to p l .  

Han-Kobayashi [5] ,  with reference to Blahut's results, defined an 
r-divergent sequence, which is an extension of typical sequence, and 
then approached this problem using an information-theoretic method. 

Theorem (Hun-Kobayashi's Strong Converse Theorem [5]): If r > 
D ( Y I  llpo ), 

1 
- log (1 - 
I1  

As we can see from these theorems, if r < D ( p l ( l p ~ ) ,  p(&)  + 0, 
while if r > D(pilJpo), 3 ( o : )  + 1. The theorem for the latter case 
is called the converse theorem. In this work, we study these problems 
according to Neyman-Pearson's lemma and analyze the geodesic 
in the space A that connects the two probability measures po and 
p l .  We show that the condition r > D ( p l ( l p 0 )  is divided into two 
separate cases and a lucid explanation is given for the introduction 
of Han-Kobayashi's linear function fr [5 ] .  We also mention general 
upper bounds of a(  0, ). 

11. PRELIMINARIES 
We present some geometric preliminaries which are used to cal- 

culate power exponents of the hypothesis testing for p o ,  p l  E A. 
The most powerful test function under the constraint a ( & )  5 o is 
completely determined by Neyman-Pearson's lemma. 

Lemmu I (Neymun-Pearson, see f6]): For any a, 0 < a < 1, 
there exists a test function @E, with a constant A,, which satisfies 
n(oE) = a and 

This is the most powerful test function. Write E = {w"lpo(w") = 
A , ~ ~ ( L L ' " ) } .  I f p o ( E )  # 0, we have &(d) = 6 for wn E E ,  where 

h = l -  

For an 71-sequence d n  E Q", denote by A V ( i ( s " )  the number of 
1 E Cl appearing in 2.  We have Ar(i1dn) >_ 0, CtEn N(i lw")  = 
1. Then, putting p,-  2 ( ~ N ( ~ ~ L L ' " ) ) ~ ~ Q ,  we have p,- E x. The 
probability measure p w -  is called the type of w n .  The following 
lemma is applicable to our problem of calculating power exponents. 

Lemma 2 (Sanov, see [4]}: Let A be a subset of h and A, be the 
set of types of 71-sequences in A.  Then for any p E the following 
inequality holds: 

I log p{d'11pun E A} + min D(ql (p)  I 

If A is closed and Un,, A ,  is dense in A (with respect to the usual 
topology of R " L + l ) ,  we obtain 

( m  + 1) .  

(11) 
sE 4, I 

1 
11 lim -m - - log  71 p { w ' ' ( p d n  E A} = minD(q)(p). ¶ E A  (12) 

According to Neyman-Pearson's lemma, if two sequences 
d". J' E n" have the same probability (with respect to po and 
p l ) ,  o:(drl) = d ~ ( 5 " )  holds. Thus, it is sufficient to look at only 
the type of a sequence rather than each sequence itself. So, it is 
more significant to consider the geometry of h rather than that of 
0". The general theory of information geometry [l], [7] shows that 
differential geometric structures are defined on the space A, such 
as Riemannian metric, a-connections, and dual coordinate systems, 
which have many beautiful properties. Particularly, the + 1 affine 
coordinates 0', I = 1.. . . . m, at p E A is given by 

and the equation of the geodesic L connecting po and p l  is given by 

$ ; = ( l - t ) H h + t H ; .  1 = 1 . . . . , m ,  t E R ,  (14) 

where, 0;. 0 ; .  and 0; are i th + 1 affine coordinates of P O ,  PI ,  and 
l it  (a point on the geodesic), respectively. Then substituting (13) into 
(14), we have the following alternative form of the geodesic equation: 

pr(7) = C f { P o ( i ) } ' - ~ { ~ ~ i ( ~ ) } f .  i E a, t E R, (15) 
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where C l  is the normalizing constant, i.e., Cy’ = z c E n { p o ( ~ ) } l - t  

Readers not familiar with information geometric notions may skip 
the previous manner of introducing the geodesic equation because an 
information geometric back ground is not required in the following 
discussion. They may regard (15) as a definition of the geodesic. 

The Kullback-Leibler divergence, or simply, the divergence 
D(i111q) of two probability measures p .  q E I is defined by 

. { I l l  ( ; ) } I .  

111. LIMITING; POINT OF GEODESIC 

We study the limiting points of the geodesic L that connects two 
points 110 and p I  in 1. Denote .\I+ = 11iax,~<2{ ( p ,  ( i ) / p o ( i ) ) }  > 1 
and (2’ = { i  E I I l (y l  ( i ) / p , i ( i ) )  = AI+} .  Since (15) of the geodesic 
L is rewritten as 

7. I E I?.  t E R. (17) 
CIF!!1’(l0){ *} 

we have 

We write p x  = ( p , ( i ) ) l t c l r  where )Ix(;) = l i i i i t - x p ~ ( i )  and call 
i t  the limiting point of L .  

Let E ,  be the boundary simplex of 3 that includes pr i n  its 
relative interior (with respect to the induced topology from R“”’), 
i.e., 

E ,  = { p  E I l l i ( i )  = 0. i E ( 2  - I ]+} .  ( 1 9  
In  a similar way, we define ] I - %  E 3, i.e., let 31- = 

iiiiii,tcl { ( p 1 ( i ) / p ( ) ( i ) ) }  and ( 1 -  = { i  E c I l ( p ~ ( i ) / p ~ ( i ) )  = -\I-}. 
Then, we have 

Write J I - ~  = ( l i - x ( / ) ) t c ~ ) ,  where 1 1 - ~ ( / )  = l i ~ i i ~ - - ~ p ~ ( ~ ) ,  and 
define 

E - ,  = (1’ E q p ( 1 )  = 0. I E I1 - c l - }  (21) 

(22) 

w e  notice here thdt E ,  and E - ,  are disjoint sets, or, 

E ,  n E - ,  = fl 

because (2’nO- = fl hold\ Thus, pu t t ingxf  2 I - (E ,UE- , ) ,  
we have a decomposition of 1, 

- 
= -I/ U E, U E- ,  (23)  

We find that E ,  and E-,  are parallel (in the Euclidean sense) to 
sets of the following form 

This is because 

holds for arbitrary 11 E E, (or. 11 E E-,), respectively. 

1V. LEMMAS 
First, we provide a lemma which is used in the proof of Lemma 4. 
Lemma 3: For p E If, write < ( t )  = D ( p l J p t ) ,  - x < t < x. 

Then there exists a unique p t  that satisfies 

Proof: Since p E If, $1 is not dominated by p ,  nor p-=. 
Thus, we have 

liiii ( ( t )  = 11111 ( ( t )  = x. (27) 
I-* t---r 

From (15), we have 

Then, from (28) and (29) we have 

PI ( i )  
1 1 0 0 )  

= variance of log-w.r.t. p t  

> 0. (30) 

Consequently, by (27) and (30), the existence and the uniqueness of 
0 

We give the following lemma for later investigation of the critical 

Lemma 4: For any 11 E I, there exists a unique p l ,  - x 5 t 5 

p t  with (26) are guaranteed. 

condition in Neyman-Pearson’s lemma. 

x, that satisfies both 

D(l’llP0 1 = D(PIll~t 1 + D(PIllP0 1. 

D(p11111 1 = D(l’lIP1 1 + D(P1 llPl ). 

(31) 

and 

(32) 

Proof: Remember the decomposition (23) of 3. First, we see 
that for 11 E E,. is the unique p, that satisfies (31) and (32). 
For, since p ( i )  = 0 and p x ( i )  = 0 hold for i E f2 - R+, from 
(18) we have 

D(llllpo) - D(liI(p, 1 - D ( p x  l lpo 

= 0. 

In a similar way, we also have (32). Here, suppose there exist another 
i l l ,  - x 5 t < x, which satisfies both (31) and (32). Then a simple 
calculation leads to 

a P l I P s  1 = D(lllIP1 ) + D(P1 l l P s )  (33) 
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holding for any s, - m < s < m. Since p E E,, i.e., p << p,, 
the left-hand side of (33) converges to D(pllp,) < m as s tends to 
infinity, while the right-hand side goes to infinity because p t  6,. 
This is a contradiction. Therefore, for p E E,, the existence and 
the uniqueness of p t  with (31) and (32) are proved. In exactly the 
same way, it is proved that for p E .E-,, p - ,  is the unique p t  
with (31) and (32). 

Next, for p E bf, we show that there exists a unique p t ,  
- CO < t < m, which satisfies (31) and (32). From Lemma 3, 

for p E hf there uniquely exists a p t ,  - rx, < t < 00, with 
( d < ( t ) / d t )  = 0, where ( ( t )  = D ( p ( l p t ) .  Since 

by calculation we have 

Thus, from (35), (31) is equivalent to ( d [ ( t ) / d t )  = 0 or t = 0. In 
the same way, we have 

d € ( t )  D(PIIP1) - D(PIIpt) - D(Pt(Jp1) = (f - 1 ) ~ .  (36) 

Then, (32) is equivalent to d [ ( t ) / d f  = 0, or t = 1. Consequently, the 
f that satisfies both (31) and (32) is given by the root of d ( ( t ) / d t  = 0 
whose existence and uniqueness are guaranteed by Lemma 3. This 

0 

Next, we present a lemma on the growth of divergence along the 

Lemma 5: Let p t  be a point on the geodesic defined by (15). Write 

completes the proof of the lemma. 

geodesic. 

m(t)  
D(pt IIpl), - m 5 t 5 m. We have the following. 

a) 

b) 

c) 
d) 

D(ptIlpo), a l ( f )  4 Dbtllpl), and r( t )  4 D(ptI1p0) - 

ao(t)  is strictly increasing for t > 0, and strictly decreasing 

a1 ( t )  is strictly increasing for t > I, and strictly decreasing 

r ( t )  is strictly increasing for t ,  - CO < t < CO. 

no, 01, r are bounded functions. Especially, 

for t < 0. 

for t < 1. 

r(-cm) 5 r( t )  5 r(m).  (37) 

Proof: From (28) and (29), we have 

P l ( 4  
PO(2)  

= variance of log -w.r.t. pt  

and ( d a o ( t ) / d t )  = t ( d r ( t ) / d t ) ,  ( d a l ( t ) / d t )  = (1 - t ) ( d r ( t ) / d t ) ,  
which show a), b), and c). Part d) is readily seen. 

The critical condition pO(w") = A,pl ( U " )  in Neyman-Pearson's 
lemma is rewritten as 

So, it is important to consider such subsets of as { p  E 
AI C t E n p ( i ) l o g  ( p l ( i ) / p o ( i ) )  = T } ,  where r is a constant. 
- 

Write e L U {p,} U {p-}. According to Lemma 4, for any 
p E E, there uniquely existza pt  on with (31) and (32). We call this 
p t  the projection of p onto L. By subtracting (32) from (31), we have 

D(PlIP0) - D(PIlP1) = D(PtIlP0) - D(PtIlP1) = .(t) (39) 

or 

Thus, we find that if p and q E b have the same projection p t  onto 
L,  we have 
- 

Here, we say that p and q E b are equivalent if p and q have the 
same projection, say p t ,  onto E. From (41), it is seen that the mapping 
p H r( t )  is well defined on the equivalence classes. Therefore, for 
p E b, we can define 

If p = p t  E L, r ( p t )  = r ( t ) .  Then, the critical condition (38) in 
Neyman-Pearson's lemma is expressed as 

We provide the following lemma which is used for evaluating the 

Lemma 6: Let us write E ( r )  4 { p  E b ( r ( p )  = 7). If E(r )  is 
= { p t } .  For 

first- and second-error kind probabilities. 

not empty, there exists a unique p t  such that E ( r )  n 
this p t ,  we have 

and 

(44) 

(45) 

Proof: From Lemma 4, for p E E ( T ) ,  there exists a p t  wifh 
(31), (32). Since r ( p t )  = r ( p )  = r, we have p t  E E ( r )  fl L. 
The uniqueness of p t  is obtained by Lemma 5c). (44) and (45) are 

0 

Remark: From Lemma 4, we find that E,  = E(r(00)) and 

Lemma 7: Let us write Go(T) 4 { p  E xlr(p) 5 T }  and 

alternative expressions of (31) and (32). 

E-, = E(T(-w)) .  

G1(r) 4 { p  E b l r ( p )  2 7). If p O  Gl(r),  we have 

Similarly, if pk Gj(r),  IC = 0, 1, j = 0, 1, we have 

(47) 

Proof: We prove only (46) because (47) is proved in the 
same way. First, E ( T )  C G1(r) implies minPEcl(.) D ( p J J p 0 )  5 
min,EE(.) D(p1lp0). We show the opposite inequality. For any 
p' E G1(r), we denote by ptr the projection of p' onto E .  By (31), 
we have 

D(P'IlP0) 2 D(Pt' IlPO). (48) 

Let p t  denote the unique point in E ( r )  n z, then p t  attains 
m i n , ~ ~ ( . )  D(pI1p0). Sincepo f2 GI ( r ) ,  pt E E ( r ) ,  andp,! E G(r), 
we have 

T(P0) < T b t )  i .(Pt,). (49) 
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Then, by the monotonicity of ~ ( f )  and a o ( t )  in Lemma 5 ,  we obtain 
0 < t 5 t' and hence, 

V. DIRECT THEOREM 
Denote by o:, the most powerful test function under the con- 

straint a(&) < w p - r n ) .  Let p l ( r )  be the power exponent, 
i.e., / i ~ ( r )  = 11111,,-~ - ( l / t j ) l o g , j ( o z ) .  We present the following 
theorem. 

A .  

Theorem I :  If 0 < t '  < D(pl I lpo ) ,  we have 

P l ( I ' )  = m t -  l IP1 1. (51) 

where / i t *  = ( p , * ( i ) ) , E c z  is given by l i t * ( ; )  = Ct={p( ) ( i j } ' - ' *  
{ / ) I ( ; ) } ' * ,  i E R, C,' = ~ ~ ~ * { ~ J ~ ( ; ) } ' - ' ~ { ~ J ~ ( ; ) } '  , and 

Proof: According to Neyman-Pearson's lemma, the most pow- 

1. if ~ o ( L " )  > A , r p l ( d " ) ,  i 0. if p o ( & * " )  < A , , p I  ( - . , ' I ) ,  

D(pt* I (p0 )  = r ,  f' > 0.  

erful test function 0: is 

o:,(&,") = b.  if p o ( d " )  = A , , p l ( d " ) ,  (52 )  

where A,, is a positive number and 0 5 b 5 1 
Now, we claim 

Remember ~ ( t ' )  = D ( p r -  \lpll) - D(p ,*  I(pl). From the assumption 
0 < I' < D(/iillpo), we have 0 < t" < 1 by Lemma 5 .  We show 
that a chain of inequalities 

1 1 ~ ( t * )  5 h i  iiif - -log A,, _< Iirri \up  - - log A,, 5 r ( t * )  (54) 
r t - x  I i  -x 1 1  

hold. Suppose r ( t * )  > liiiiinf,z-x - l/tt log A,,. Then, by 
Lemma 5 ,  there exists a t , ,  0 < t ,  < t*.  such that i ( f * )  > 
~ ( t l )  > - l / n  log A,, hold for infinitely many nf\ .  Then, by 
Neyman-Pearson's lemma, we have 

Now, we prove P I ( / . )  = D(pf -  ( 1 p l  ). From (53) and Lemma 5,  for 
any F I  > 0, there exists a t l ,  0 < ti < t' < 1 such that 

T ( t 1  < - log A,, (57)  
t i  

and 

D(" IlPl < D ( P f +  11P1 ) + f 1  (58) 

hold for sufficiently large /Ifs. Then, we have 

.j(O:,) 2 / J I  A' I T ( l ) c . ~ z )  < { ' I  

2 / ' l { & , g t l T ( p d n )  5 T ( t 1 ) )  

= p i  { A , y / ' & ' 1  E Go(r(t1 I ) } .  

Since tl < 1, we have p i  $! G ( ] ( r ( t l ) ) .  Thus, by Lemmas 2 and 7, 
for any f z  > 0 and for all sufficiently large u ' s ,  we have 

1 1 
--log t t  , j(o;) 5 - - l ~ g / i i { d " l / i ~ ~ ~  t t  E G o ( T ( ~ I ) ) }  

5 iiiiii D(pIlp1 ) + tz 
= 111'1 1 + 62 

< Dill,* 111'1) + F I  + f 2 .  

i ' t ( : " ( T ( f ,  1 1  

Because 61 and f z  are arbitrary positive numbers, we have 
liiiisup,z-x - l / t i  log ,I'(O; ) 5 D(/J / -  I(pl ). The inequality 
D ( p , -  1 1 / 1 1  ) 5 liiiiinf,t-x - l / t l  log .j(o:,) can be proved in the 
same way. 0 

VI. CONVERSE THEOREM I 
We see from Theorem 1 that if 0 < t '  < D(pIJIyo),  ,j(oT,) 

converges to 0 as I I  tends to infinity. On the contrary, if I' > 
D(pl l (po) ,  J(oE) converges to 1. So, in this case, we calculate 
the power exponent - l / t t  log(1 - , j ( ~ : ~ ) ) .  We will show 
that the case I' > D ( / J ~  I(/',]) is divided into two separate cases, 
i.e., D(pl  [ l p ~ )  < t '  < D ( p x  ( ( P O  and I' > D ( p x  ). If r < 
D ( p ,  Ill10 1. including Theorem 1, the randomization of testing is 
not essential as we can see in the proof of Theorem 1; however, if 
r > D ( p x  I ( p o ) ,  the finiteness of the power exponent is guaranteed 
by randomization. 

Let p 2 ( t ' )  be the power exponent in the case where D(plJIp0) < 
I' < D ( p x ( l p ~ j ) ,  i.e., p 2 ( r )  = Iiin,,--, - 1 / t t log ( l  - , j ( o : ) ) .  We 
present the following theorem. 

A .  

Theorem 2: If D(pl  J J p o )  < I'  < D(pxl lp") ,  we have 

1 
I'= --log a(oT,) 

t i  

D(/~t*I l / 'o )  = t ' ,  t' > 0. 
Proof: In the same way as the proof of Theorem 1, for the 

5 -~ logpo{- ." t ly , .~  E G I ( T ( t l ) ) }  

5 miii D(pl(p0)  + t 
most powerful test function u t ,  we consider the critical condition in 
Neyman-Pearson's lemma, i.e., ~ ( p ~ ~ ~  ) = - l / u  log A,, . We claim t i  

(60) 
P€c;l ( r ( f 1  ) )  1 

= D(Pf  1 I l P o )  + f ,,-x t t  

< D(Pt* I I P O )  

h i  - - log  A,, = r ( t*  ). 

Suppose r ( t * )  > liiiliiif,t-x - l / t )  log A r t .  By the assumption 
D(p1llpo) < I' < D(pxl lp[) ) ,  we notice that 1 < t" < x. Then, by 
Lemma 5 ,  there exists a t l ,  1 < t I  < t * ,  such that 

- (56) 

This is a contradiction, so we have ~ ( t *  ) 5 liiii iiif,,-, - 1 / t i  log A,, . 
We can show linisupr,-x - 1 / n  log A,, 5 T ( / * ) ;  however, the proof 
is almost the same as before, so we omit it. 

- t'. 

(61) 
1 
t i  

T i t * )  > r ( t1 )  > --log x,, 
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hold for infinitely many n's. By Neyman-Pearson's lemma, we have 

{ : I  cY(4*,) 2 p o  Wn(.(pw") > - - log A, 

2 po{wnl.(pu") 2 .(tl)) 
=po{w"Ipu* E Gi(T(ti)}, (62) 

for infinitely many n's. Since t l  > 1, we have PO G l ( ~ ( t 1 ) ) .  
Therefore, by Lemmas 2 and 7, for any E with 0 < E < D ( p p  1 1 ~ 0 )  - 
D(pt ,  llpo), and for all sufficiently large n's, we have 

1 
n 

r = --log ~(4:) 

p E G i ( T ( t i ) )  
5 min D(pl lp0)  + e  

= m t ,  b o )  + E 

< m t *  llP0) 

= T ,  

which is a contradiction. Thus, we have r(t*) 2 liminf,,, - 
1/n log A,. Similarly, we can show lim supn-, - 1 / n  log A, 5 
r(t* ), which together with the previous inequality implies (60). 

By Neyman-Pearson's lemma, we have 

1 - P ( & )  2 pl wnlT(pdn ) 2 -- log A, . { : I  
Then, through an argument similar to the proof of Theorem 1, we 
consequently obtain (59). (Here, it is easy to check that (59) can be 

U achieved also by using a nonrandomized test function.) 

VII. CONVERSE THEOREM I1 

We notice that the proof of Theorem 2 is not available if T > 
D ( p ,  Ilpo). As we see later, if T > D ( p ,  llpo),  the set {wR ( ~ ( p ~ n  ) > 
- l / n  log A,} is empty for all sufficiently large n's. So the number 
6 in Neyman-Pearson's lemma determines the power exponent. The 
randomization is essential in this case. 

Let p 3 ( ~ )  be the power exponent in the case r > D(p,I(po), i.e., 
p 3 ( ~ )  = limn-, - l / n l o g ( l  - U ( & ) ) .  

A .  

Theorem 3: If T > D(p,I(po),  we have 

P 3 ( T )  = T - D(p,Ilpo) + D(pcalb1). 

- - log A, = .(E) 

(63) 

(64) 

Proof: First, for the most powerful test function &, we see that 
1 
n 

holds for all sufficiently large n's. For, by Lemma 2, we have 

lim - - log p o { w " l ~ ( p , - )  = .(CO)} = D(p,(Ipo) < DS. 
1 

(65) 

thus, we find that p o { d l ~ ( p ~ n )  = .(CO)} > 0 for all sufficiently 
large n's. While the set { w " 1 ~ ( p , - )  > .(CO)} is empty because 
.(pun ) 2 .(CO) holds for all n's by (37), (41), and (42). Therefore, 
it is readily seen that a test function 4, defined by 

n - m  n 

1, ifpo(w") > A n p 1 ( w n ) ,  

0. if p o ( w " )  < Anp1(wn), 
4, (w" ) = 6, if PO ( w n  ) = ~ , p l  ( w n  1, (66) 

exp (-m) 

{ 
with A, = exp(-nr(m)) ,  and 

6 = 1 -  
p o { L J n l r ( p d n )  = dx)) 

satisfies 

~ ( 4 , )  = exp(- rn)  and 0 5 6 5 1, (67) 

for all sufficiently large ?Is, by using the assumption T > D(p,IIpo) 
and (65). Hence, this 4, is the most powerful test function, i.e., 
4, = &, and A, = exp (-nr(cm)) or (64) holds for all sufficiently 
large n's. 

Now, we show (63). For n, which satisfies (64), we have, by (66), 

1 - P ( & )  = 1 -pl{w"(po(w") > A * P l ( W " ) }  

- 6pl{wnlpo(w") = AnPl(w")} 

= (1 - 6)pl{w"l.(pw.) = .(CO)) 

Thus, from Lemmas 2 and 6, we have (63), i.e., 

U 

VIII. RELATION WITH HAP-KOBAYASHI'S RESULT 
We now show that the power exponents obtained in Han-Kobaya- 

shi's paper [5] coincide with those obtained in our Theorems 2 and 3. 
For, if D ( p l l l p o )  < r < D(p,)Ipo),  by Lemmas 4 and 5,  we have 

max  T ( t )  
"(') = - t D ( p t I [ p ) < r  

min 
P D(PIIPO)<~ 

= T - r ( t * )  

= m t *  IIPI), 
where t' is determined by D(pGJJp0) = T ,  t' > 0. While, if 
T > D(p,Ilp~), we have 

min fr(P)  = - og$t)5r.(t) 
P D(pllpo)Sr 

= T - .(CO) 

= T - D(PmIb0) + D(PcaIlP1). 
Incidentally, the proof of Theorem 2 in [5]  includes a small 

mistake. In our notation, if N = 1, E ,  = E(T(co))  is a vertex of n 
(we consider as a simplex in Rm+l). Remember N is the number 
of indexes that attain the maximum of log ( p 1 ( i ) / p o ( i ) ) ,  z E R. So, 
N = 1 is the generic case. In this case, in the notation of [5] ,  X(") 
coincides with 80, and Xo coincides with our E,, a vertex. They 
considered proper subsets of S," ( X ( " ) )  (where S," ( X ( " ) )  is the set 
of n-sequences whose type is X("), in the notation of [5]); however, 
this is impossible because I5',"(Xcn))l = IS,"(Xo)l = 1, S , " (X(" ) )  
does not have a proper subset. This is also the reason we must use 
randomized test functions. 

IX. GENERAL CONSTRAINT 

Now, we consider a more general constraint a ,  5 cn.  If the 
sequence { - l / n l o g ~ , } ~ = ~  is decreasing, write T O  = limn-, - 
l / n l o g  cn. If 0 < r0 < D ( p l  l lpo),  we obtain the power exponent as 

Then, for example, under the constraint of the type a ,  5 l/nk, 
k > 0, we see that the power exponent equals D(p l I (po ) ,  which is 
the same result as under the constraint cy, 5 E ,  E > 0. 
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