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On the Converse Theorem in Statistical 
Hypothesis Testing for Markov Chains 

Kenji Nakagawa, Member, f€E, and 
Fumio Kanaya, Member, IEEE 

Abstract-Discussion on the converse theorem in statistical hypothesis 
testing. Hypothesis testing for two Markov chains is considered. Under 
the constraint that the first-kind error probability is less than or equal to 
exp( - - T R  ), the second-kind error probability is minimized. The geodesic 
that connects the two Markov chains is defined. By analyzing the geodesic, 
the power exponents are calculated and then represent in terms of 
Kullback-Leibler divergence. 
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1. INTRODUCTION 

In this continuation of our work [8], we investigate simple statis- 
tical hypothesis testing for two Markov chains. 

Let a finite set R = {O. 1. . . . t t t  } be the state space of a Markov 
chain. Let S be the family of all subsets of R. R" the set of all 
one-sided infinite sequences whose components are in 11, and S" 
the product u-algebra of S .  If a stationary probability measure on the 
measurable space (9". S" ) satisfies 

P ( d'? ) = p ( d 1 ) P ( d 2  Id, ) . ' ' P( d ,) 1 - 1 ) . 

for any sequence d" = d,d~...~,,, E O",  the triple (0. P. t t ) ,  

or simply P is called a finite-state Markov chain. Here, P(i'lij, 
i. i' E R, is a conditional probability of i' given i ,  which is called 
a state transition probability of P ,  and p ( i ) ,  i E R, is a probability 
measure on 12, which is called an initial probability measure. In (l), 
P ( d " )  should be written as P([L"]), where [-.'"I is the cylinder 
set, i.e., [&'"I = {d" E 1 lx l  the ith component of d X  is L ~ .  i = 
1:'. . t i } ;  however, we write P ( d " )  for the sake of simplicity. 

Simple hypothesis testing for two Markov chains PO (null hypoth- 
esis) and Pl (alternative hypothesis) whose state transition proba- 
bilities are all positive is considered. Let o , ~  be a randomized test 
function of the hypothesis testing, i.e., o , ~  is a mapping from R" 
to the closed interval [O. 11 = { . r lO 5 5 1). From now on, we 
assume that the term "test function" is always used as a randomized 
test function. For a test function o,, , the first-kind error probability 
C I ( O ? , )  and the second-kind error probability . j ( o v 1 )  are defined as 
follows: 

(1 1 

The most powerful test function under the constraint n(o,) 5 0, 
a > 0, is defined as a test function 0: that satisfies 0 ( Q:, ) 5 a and 
,j( or, ) 5 J( o,, ) for arbitrary on with a (o,, ) 5 a .  In this work, our 
goals are to determine the most powerful test function O: under the 
constraint a (0: ) 5 rxp ( - r  n ), where I' is a given positive number, 
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and calculate linin-% - ;log 3(0', ) or limn-= - +log (l-J(o:)), 
and represent them in terms of Kullback-Leibler divergence. These 
limiting values are called the power exponents of hypothesis testing. 

11. PRELIMINARIES 
For a finite sequence d n  = d l - u ' p  ...d ,I E n', the frequency 

-Y(i. i ' l d " ) ,  i .  i' E R, is defined by 

~ ( i .  i ' ld 'z  ) 2 Ch(ii'. i ' i d c + I  ), (4) 
k = 1  

where h ( i i ' .  d k d k + , )  = 1 if d k  = i and d k + l  = i ' ,  and = 0, 
otherwise. We regard I )  + 1 = 1. Let us define the second-order type 
[4] P,n ( i .  i ' )  of a sequence d" E R" by 

It can be readily seen that the second-order type Pan has the 
following properties [9]: 

We denote by 5' " the set of probability measures on R x 11 whose 
two marginal distributions are equal, i.e., 

c P ( i .  i ' )  = x P( i ' .  i ) .  i .  i' E 12 . (8) 
Z ' € C l  ! ' E < ?  1 

We have P,.> E 3''' for any L" E 12". Let us denote by 3:;' the set 
of second-order types of ti-sequences, i.e., 3::' 2 {PA- Id" E 0'' } .  
I t  is easily verified that 3:;) is dense in x(2) (see [9]). 

A subset of IS defined by '- 

(9) 1 ( 2 )  - - { P  E P p J ( i .  if) > 0. i .  i' E Cl}. 

According to general theory of Markov chains, if the state transition 
probabilities P ( i ' ( i )  of a Markov chain P are positive for all 
i .  i' E 12, there uniquely exists a probability measure p = ( ~ ( i ) ) ~ t ~ 2  
on R which satisfies C t t C 2 p ( i ) P ( i ' l i )  = p ( i ' ) ,  i' E R. We have 
~ ( i )  > 0, i E n. This p is called the stationary probability measure 
of the Markov chain P. 

We consider hypothesis testing for two Markov chains PO. PI with 
PO(i']i) > 0, Pj ( i ' l i )  > 0, i .  i' E R. Denote by P o .  pl the stationary 
probability measures of PO. P I ,  respectively. We use p o .  p1 as the 
initial probability of PO. Pl , respectively. 

The most powerful test function under the constraint a(o:,) 5 n is 
completely determined by the following Neyman-Pearson's lemma. 

Lemma 1 (Neyman-Pearson, see [ 71): For two Markov chains 
(R.  PO. p o )  and (12. F', . ), and for any a, 0 < n < 1, there exists 
a test function ot with a constant X,,that satisfies n(o' , )  = n and 

(10) 
1. if PO(,,") > Ar,P1(d"), 
0. if  PO(^^") < X,Pl(d"). 0;  (&," j = 
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This is the most powerful test function. Write E = {U” E 
nnIPn(Jn) = X n P l ( W n ) } .  If P ~ ( E )  A x d y n E E ~ o ( i J n )  > 0, we 
have &(U“) = 5 for dn E E ,  where 

’ (11) 
n - P O ( d J ” I P O ( W ” )  < X,Pl(d”)} 

PO(E) 
h = l -  

For P E x(’) and a transition probability matrix Q = Q( i ’ l i ) t ,  z f E n ,  

the Kullback-Leibler divergence D( PI\&) is defined by 

where P(i‘1i) = P ( i ,  i ‘ ) / p ( i )  if p ( i )  > 0, p is the marginal 
distribution of P. Particularly, for P E E(’) and Q E A(’), D(PIIQ) 
is defined by (12) with Q(i’1i) = Q( i .  i ’ ) / q ( i ) ,  q is the marginal 
distribution of Q. 

Here, we borrow a result from the large deviation theory for 
Markov chains. For P E A(’), the Markov chain with state transition 
probabilities P(i’1i) = P(i .  i ’ ) / p ( i ) ,  i ,  i’ E R, and p ,  the stationary 
probability of P, is stationary ergodic. So, by the Asymptotic 
Equipartition Property of a stationary ergodic Markov chain, the 
second-order types of almost all sequences 2 E R” are “close” 
to P. Hence, the probability of the set of 2 ’ s  whose second-order 
types are “far” from P is small. The following lemma evaluates that 
small probability. 

Lemma 2 (Natarajan [9]): Let A be a subset of x-(2) and ’4” ( #  
0) be the subset of A of the second-order types of n-sequences. 
Then for any P E A(’), we have 

1 5 - log(n”“’ (n  + l ) ( ” ’ f 1 j 2 ( m  + 1)/-,1y2). 

where 71 = min,Enp( i ) ,  = min,, ( i ’ l i )  and p is the 
stationary probability measure of P. Particularly, if 4 is a closed 
set and U,>, A ,  is dense in A, we have 

- 

1 
lim - -logP{dj”(P,-  E A} = minD(Q1IP).  

71 -E 71 Q E 4  

According to Neyman-Pearson’s lemma, in order to calculate power 
exponents, it is sufficient to look at only the second-order type Pdn of 
2.  So, it is more significant to consider the geometry of h(’) rather 
than that of 0”.  From the general theory of information geometry 
of A(’) (see [ l ] ,  [2], [6]), we use here the notion of the + 1 affine 
coordinate and the + 1 geodesic. 

The t 1 affine coordinate of a point P in A(’) denoted by 
6’ = (8“ ) t , L E n .  , r f o  is defined [6] by 

The + 1 geodesic L connecting two points PO, PI E A(’) is defined, 
in terms of + 1 affine coordinates, by 

0;‘’ = ( I  - t)6’:’ + t6’;”. 1. z ’  E R. / ’  # 0, f E R. 
(15) 

where BO = (e : ’ ) ,  O1 = ( O ? ’ ) ,  and O f  = (6’; ‘ ’) are + 1 affine 
coordinates of P o ,  P I ,  and Pt (a point on L),  respectively. 

By substituting (14) into ( lS) ,  we have the following alternative 
expression of the geodesic equation: 

Pf(t’lt) = -Pg(i’li)’-‘P~(i’l~jf. 2 .  1’ E R, (16) 
c t  1‘ f ( 2 ) 

where 

and 

Ct = Ct (0). (18) 

By taking the summation of both sides of (16) with respect to i’ E 0, 
we have 

c P O ( i ’ l i ) l - t P ~ ( i ‘ l i ~ t ~ t ( i ’ )  = Ctvt(i), i E R. (19) 
2‘ER 

Thus, we see that Cf is a right eigen value of the positive matrix 
( P n ( i ’ ~ i ) l - t P l ( i ’ ~ i ) f ) ~  z r ~ ~ ,  and vt is an eigen vector for Ct. From 
(17) and (18), we have Ct > 0, v t ( i )  > 0, t E R, i E R. Then by 
the positive matrix theory we see that Ct is the maximum eigen value 
with multiplicity 1. So, the geodesic equation (16) coincides with the 
equation which is given by [9, p. 3631. 

If the reader is not familiar with the information geometry of the 
space A(’), he may consider (16) as a definition of the geodesic L 
that connects PO, PI E A(’). 

111. LEMMAS 

In this section, we provide lemmas on divergence geometry of 

Let L be the geodesic connecting PO, PI E A(’), whose equation 

Lemma 3: log c t  is a strictly convex function of t ,  - CO < t < x. 

- ( l j  A .  

is given by (16). We have the following lemma. 

Proof: We show 

(20) 

In fact, by (16), we have 

log Ct = - log  Pt(O\O)+(I-t) log Po(OIO)+t log Pl(O1O). (21) 
I 

By ( lS) ,  is a differentiable function o f t ,  and (14) can be regarded 
as a differentiable coordinate transformation of (P(i’Ii))*, l r # O  

and ( ~ 9 ” ’ ) ~  s ,En,  hence, we see that Pt(i’li), i ,  i‘ E R are 
differentiable with respect to t. Therefore, by (21), logCt is also 
differentiable. 

Now, by (16), we have 

d’ 
d t2  

= - log Ct 3 

which leads d 2 / d t 2 1 0 g C t  2 0, - CO < t < CO. Suppose 
d 2 / d t 2  log Ct = 0 holds for some t E R. From (22), we have 

d 
d t  
- log Pt(i’12) = 0, i ,  i’ E R. (23) 

Then by (16) and (23), we have 

d d t ) t  ( i )  
d t  v t ( t  ) 

log = log C f  + - log i ,  i’ E R. (24) 
Po ( I ’  ( i )  

By taking the expectation of both sides of (24) with respect to Po 
and PI, we have 

D(POllP1) + D(PlIIP0) = 0, (25) 

a contradiction. Consequently, we have (20). 



63 1 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 2, MARCH 1992 

Lemma4: Let us write (To(t) 2 D ( P ~ I I P ~ ) ,  a l ( t )  2 D(PtllPl ), 

a) g o i t )  is strictly increasing for t > 0, and strictly decreasing 
for t < 0; 

b) C I  ( t )  is strictly increasing for t > 1, and strictly decreasing 
for t < I; 

c) T ( f )  is strictly increasing for t ,  - x < t < x. 

and T ( f )  2 D(Pt I IP~)  - D(PtllP1), - x < t < x. We have 

Proof: First, we show that the following relations hold: 

(26) 
d 
d t  

(To i t )  = - log (/ + t - log Ct.  

(27) 
d 
d t  

C l ( t )  = -log ( t  + ( t  - 1)- log  Ct.  

and 

In fact, from (16) we have 
d 
d t  
-log Pt(i'li) 

Pl(/'l?) (1 d d 
Po(/'l/) dt d t  d t  

= log - - -log <t + - log ~ t ( 1 ' )  - - log I r ( 0 .  (29) 

Taking the expectation of the both sides of (29) with respect to 
Pf(i. i ' ) ,  we have 

d 
0 = T ( t )  - -log d t  </. 

which implies (28). Again, from (16) we have 

Taking the expectation of the both sides of (31) with respect to 
E ' / ( / ,  i ' ) ,  we have 

0 0  = t T ( t )  - log  </. (32) 

which proves (26) with the aid of (28). Equation (27) is immediately 
obtained from (26) and (28). 

From (26), we have ( d c o ( t ) / d t )  = t ( d L / t l t L )  log<,, which implies 
a) by Lemma 3. Similarly, by differentiating both sides of (27) and 

0 (28), we have b) and c),  respectively. 

For P E I"), let us define 

(33) 

Particularly, for Pt E L ,  T ( P f )  is equal to T ( t ) ,  which was defined 
in Lemma 4. 

The critical condition PO (-.''I ) = A,, PI (-.''? ) of the most powerful 
test function in Neyman-Pearson's lemma is rewritten as 

Therefore, we see that it is important to consider sets in 3") of the 
form { P  E x ' " I T ( P )  = r(constant)}. 

and PI E A('), we find that T ( t )  is bounded. By the 
monotonicity of T ,  there exist limiting values of T ( t )  as f tends 
to infinity or minus infinity. We write these limiting values by 
T ( X )  = h i t - ,  T i t ) ,  r ( - x )  = linit--K r ( t ) .  We have 

Since 

T ( - X )  5 T ( t )  5 T ( X ) .  -x 5 t 5 x. (35) 

Let us write 

E ( t j  2 { P  E P I T ( P )  = T ( t ) } .  (36) 

- x 5 t 5 x. Here, we have the following lemma. 
Lemma5: For any P E E ( t ) ,  - x < t < mx, 

D(P(IAr 1 = D(PllP/ ) + D(PtllP0). 

D(Pl1Pi) = D(f'llPt) + D(PtllP1) 

(37) 

(38) 

and 

hold. 
Proof: The assumption P E E ( f )  implies 

D(PIIRij - D(Pr119)) = D ( P l l p ~ )  - D(ptllp1). (39) 

Hence, from (39), it can be easily seen that for any s, - x < s < x, 
D(PIIPo) - D(Ptl(Po) = D(PIIP,5) - D(Pt(lP5) (40) 

holds. Substituting s = t into (40), we have (37). Similarly, from 
0 

Since the functions r r o ( t )  and o ~ ( t )  are also bounded, 
there exist the limiting values rro(fx) 2 linit-+, a o ( t )  and 
( r l  (*x j 2 lirrit-*x o l ( t ) .  

(39) and (40), we have (38). 

Lemma 6: We have 

rriir i  D(PllP0) = oo(t) .  (41) 
PE&*'( / )  

and 

niin D(P11P1 j = (TI  ( t j .  (42) 
P t F ( 0  

for any t ,  - x 5 t 5 x. 
Proof: For t ,  - x < t < x, (41) and (42) are readily obtained 

by (37) and (38), respectively. For t = x, we now show 

iiiiii D(PIIP0) = oo(3c). (43) 

D(P'lIPl1) < o o ( x ) .  (44) 

P € C ( X j  

Suppose there exists a P' E E ( x )  with 

Then, by the monotonicity of 
that satisfies 

and ( T I ,  there exist t o .  t i  < x 

D(P'IIP"j = c r o ( t o ) .  (45) 

D(P'IIPi j = g i  ( t i  1. (46) 

and 

If t o  5 t l ,  by subtracting (46) from (45), we have T ( P ' )  = 
c r o ( t 0 )  - a l ( t1 )  5 m o ( t l )  - c r l ( t 1 )  = T ( t l )  < ~ ( x ) ,  which 
contradicts the fact P' E E ( x ) .  Similarly, if t o  > t i ,  we have 
T ( P ' )  5 ~ ( t ~ j  < T ( x ) ,  a contradiction. Thus, for any P E  E ( x ) ,  

g o ( x )  5 D(PIIP0j (47) 

holds. Next, we show that the equality of (47) holds for some 
P E E ( x ) .  In fact, according to the compactness of 3'" and the 
monotonicity of 0 0  and 01, there exists a P, E 3") with 

D(p=.lIf'o) = g o ( ~ - i .  (48) 

D(PxllP,) = o I ( x ) .  (49) 

and 

Then, from (48) and (4Y), we have Px E E (  x). Hence, the equality 
of (47) holds for the P,. This completes the proof of (43). The other 

0 
Let us write G o ( t )  e { P  E 3 ' 2 ' l T ( P )  5 r ( t ) } ,  G l ( t )  2 { P  E 

cases are proved in the same way. 

-(2) 3 IT (P)  2 T ( t ) } ,  for t ,  - x 5 t 5 x. 
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Lemma 7: For t ,  - m 5 t 5 m, if PO G l ( t ) ,  we have - l l o g  A, hold for infinitely many 72's. Hence, by Neyman-Pearson's 
lemma, for sufficiently large n's, we have 

(9 1 (50) UnlT(P,n) > - - log  1 A, + o  min D(PI(P0) = ao(t) .  
p E G i ( t )  

Similarly, if pk $! G,(t) ,  k = 0, 1, j = 0, I ,  we have 
2 Po{U"lT(P,n) 2 T ( t z ) }  

min D(P[(Pk)  = g k ( t ) .  (51) = Po{d"IPun E G i ( t 2 ) ) .  (59) 
P E G , ( t )  

Notice that t 2  > 0 implies PO @ Gl( t2 ) .  Thus, by Lemmas 2 and 7, 
for any F with 0 < E < D( Pt* lipo) - D (  Ptg lipo) and n ' s  sufficiently 
large, we have by (59), 

Proof: We prove only (50). The other cases are proved similarly. 
We claim 

1 
n which together with (41) implies (50). First, E ( t )  C G l ( t )  5 --log Po{-"'lP,- E G i ( t 2 ) )  

there exists a P' E G l ( t )  - E ( t )  that satisfies D(P'IIPo) < P E G i ( t z )  
< min D(PI(PO)+e (60) 

= D(Pt, l l P 0 )  + 6 

< D(Pt* I I P O )  

leads to minpEG,(,) D(PIIP0) 5 minpEs( t )  D(PIIP0). Suppose 
- 

m i n p € s ( t j  D(PIIPo). Since D(PJIP0) is a continuous function of 
P E x-('), there must exists a neighborhood 17 C G l ( t )  - E ( t )  of 

- - r .  
P such that for every Q E I' II A(", 

D(QIIPo) < p~$t)D(pllPo) (53) 

holds. Connect the two points PO, Q by the geodesic LP,,Q and 
denote by Q s  a point on Lp,y. The parameter s is determined to 
satisfy QO = PO and Q1 = Q. From Lemma 4, we see that the 
divergence D(Q,IIPo) is a strictly increasing function of s > 0, 
hence by (53), we have 

D(Q,IIPo) < pF&tjD(PIIPo). 0 < s < 1. (54) 

By the assumption of the lemma and Q E G l ( t )  - E ( t ) ,  we have 
T ( P o )  < T ( t )  and T ( Q )  > r( t ) ,  respectively. Therefore, by the 
intermediate value theorem, we see that there exists an s, 0 < s < 1 
that satisfies T(Q,) = ~ ( t )  or Qs E E ( t ) ,  but, which contradicts 
(54). 0 

IV. DIRECT THEOREM 

Let us denote by 4; the most powerful test function under the 
constraint a(@,) 5 exp(-rn),  and by p l ( r )  the power exponent, 
i.e., 

(55) 

We have the following theorem. 

Theorem 1: (see Theorem 2 in [9]): If 0 < r < D(P1 IIPo), 

Pl(.) = D(Pt* (19 1 (56) 

holds, where Pt* = (Pt* ( i ,  i'))*, 
connecting PO and PI that satisfies D(Pt* llP0) = r ,  t* > 0. 

is a point on the geodesic 

Proof: The critical condition of Neyman-Pearson's lemma is 
rewritten as 

(57) 

First, we claim that 

(58) 
1 

lim - - log  A, = r(t*).  
n-00 n 

The assumption 0 < T < D(Pl implies 0 < t* < 1 by Lemma 
4. Suppose T ( t * )  > liminf,,, - +logA,. Then, there must exist 
t l ,  t2, 0 < tl < t 2  < t*, such that ~ ( t * )  > r(t2) > r ( t1 )  > 

which is a contradiction. Hence, we have ~ ( t * )  5 l imlrminfn-03  - 
'log A,. This argument is almost the same as the proof of Theorem 
1 in [8], both of which are based on the monotonicity of functions 
(TO, gl ,  and T .  So, similarly, we can show the inequality ~ ( t * )  2 

0 limsup,,, - :log A,,, and (56). 

V. CONVERSE THEOREM I 

In the case r > D(P1  PO), we calculate the power exponent 
limn-- - i l o g ( 1  - ,3(0:)) instead of (55). We see that the 
condition T > D ( P I ( ( P o )  is divided into two separate cases, i.e., 
D(P1IIPo) < r < oO(m)  and 1' > no(=). Although in the 
former case (and also in Theorem l) ,  the randomization of a test 
is not significant, in the latter case the randomization is essential to 
guarantee the finiteness of the power exponent. 

Let us denote by p 2 ( r )  the power exponent in the case 
D(Pl(IP0) < r < C J O ( C C ) ,  i.e., 

Theorem2: If D(P1IIPo) < r < U O ( X ) ,  we have 

pz(r) = D(Pt- ()PI ), (62) 

where Pt* = (Pt* ( i .  i ' ) ) t  I t t c L  is a point on the geodesic connecting 
PO and PI that satisfies D(Pt* = r ,  t' > 0. 

Proof: Let us consider the most powerful test function 0: given 
in Neyman-Pearson's lemma. According to the monotonicity of (TO, 

01, and T ,  we can show limn-= - :logA, = r ( t* )  in the same 
way as the proof of Theorem 1. Furthermore, (62) is proved in a way 
similar to Theorem 2 in [8]. (It is evident here to see that (62) is 
obtained by the use of a nonrandomized test function.) 

VI. CONVERSE THEOREM I1 

If r > (~~(cm), as previously mentioned, the randomization of a 
test guarantees the finiteness of the power exponent. Here, we provide 
a slightly weak form of converse theorem. Let p 3 ( r )  be the superior 
limit of the error exponent, i.e., 

(63) 
- A  1 
p 3 ( r )  = l inisup - -log ( I  - d(4:)). 

n - 3 c  

Theorem 3: I f  r > C J ~ ( X ) ,  we have 

p 3 ( r )  5 r - T ( X ) .  (64) 

In order to prove the theorem, we first provide a lemma. 
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Lemma8: For any P E I"), we have 

r ( -x j  5 T ( P )  5 r ix).  (65) 

Proof: For P E I('), let us define a function E ( t j  by 

< ( t )  = D(Pl(P,  j .  --x < t < x. (66) 

We have, by (28), 

!!w = r ( t j  - T ( P j  (67) rlt 
and 

Hence, by Lemma 3, <( t  j is a convex function of t .  - x < t < x. 
From (14) and (15), we see that some of' I' ,(i ' \i),  i .  i' E 12, tend to 
zero as t goes to infinity or minus infinity. Thus, by the definition 
of divergence, we have 

liiii < ( t )  = liiii ( ( t )  = x. (69) 
t - -r  I--x 

Therefore, from (69) and the convexity of ( ( t ) ,  there exists a unique 
t with ( d < ( t ) / d t )  = 0, or, by (67), r ( t j  = r(P). Consequently, 
from (354, we have (65) for P E A(". By the continuity of r(P), 

0 P E % ( 2 ) ,  (65) holds also for P E 

Proof of Theorem 3: Let us define a test function 6,, by 

1. 

0. 

if T(P-.,Z ) < T (  x j ,  

if r(P-.'z ) > ~ j x  j, 
if r ( P _ ' ? )  = T ( x j ,  (70) 

with 

By Lemma 8, we see that the set { L " I T ( P ~ ~ ~  ) > r ( x ) }  is empty. 
Hence, we have n (az ) = c x p (  - r t t  ). Since - i logf i ,  { L'' IT( PL,l j = 
r(x)} converges to no(  x )  (< r )  by Lemma 6 ,  we have 0 < 6 < 1 
for sufficiently large T I ' S .  Therefore, for the most powerful test 
function o:!, we have 

which implies p,( I' j 5 r - T (  x) by Lemmas 2 and 6 
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A Note on the Asymptotics of Distributed 
Detection with Feedback 

Hossam M. 11. Shalaby, Member, /LEE, and 
Adrian Papamarcou. MMernher, / L E E  

Abstract-The effect of feedback on the performance of a distributed 
Neyman-Pearson detection system consisting of I t  sensors, two-stage local 
quantizers, and a global detector is investigated. Two feedback schemes 
are discussed, only one of which yields an asymptotic gain in performance, 
as measured by an appropriate error exponent. 

Index Terms- Distributed detection, error exponents, feedback, hy- 
pothesis testing, Kullback-Leibler divergence, quantization. 

I .  INTKODIICTION 

A distributed (or decentralized) detection system is a network of r t  

sensors which, together with a global detector (or data fusion center), 
cooperatively undertake the task of identifying a random signal 
source. Typically, the sensors compress their observations into low- 
rate data streams, which are then transmitted to the global detector 
for processing and decision making. Compared to a conventional 
detection system with passive sensors, the distributed setup offers the 
advantages of reduced communication bandwidth, shared processing 
and increased reliability, albeit at some expense of performance 

Most distributed detection models employed in the literature are 
feedforward systems, in which the information flow from the sensors 
to the global detector is unidirectional. Recently, there has been 
some interest [ I ] ,  [2], [ Y ]  in models with bidirectional flow, in which 
feedback from thc global detector to the sensors is allowed. In such 
systems, the process of local data compression and transmission 
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