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Loss and Waiting Time Probability Approximation

for General Queueing*

Dedicated to Professor N. Suita on his 60th birthday

SUMMARY Queueing problems are investigated for very
wide classes of input traffic and service time models to obtain
good loss probability and waiting time probability approxima-
tion. The proposed approximation is based on the fundamental
recursion formula and the Chernoff bound technique, both of
which requires no particular assumption for the stochastic nature
of input traffic and service time, such as renewal or markovian
properties. The only essential assumption is stationarity. We see
that the accuracy of the obtained approximation is confirmed by
comparison with computer simulation. There are a number of
advantages of the proposed method of approximation when we
apply it to network capacity design or path accommodation
design problems. First, the proposed method has the advantage
of applying to multi-media traffic. In the ATM network, a
variety of bursty or non-bursty cell traffic exist and are super-
posed, so some unified analysis methodology is required without
depending each traffic’s characteristics. Since our method
assumes only the stationarity of input and service process, it is
applicable to arbitrary types of cell streams. Further, this
approach can be used for the unexpected future traffic models.
The second advantage in application is that the proposed proba-
bility approximation requires only small amount of
computational complexity. Because of the use of the Chernoff
bound technique, the convolution of every traffic’s probability
density fnuction is replaced by the product of probability gener-
ating functions. Hence, the proposed method provides a fast
algorithm for, say, the call admission control problem. Third, it
has the advantage of accuracy. In this paper, we applied the
approxmation to the cases of homogeneous CBR traffic, non-
homogeneous CBR traffic, M/D/1, AR(1)/D/1, M/M/1 and
D/M/1. 1In all cases, the approximating values have enough
accuracy for the exact values or computer simulation results from
low traffic load to high load. Moreover, in all cases of the
numerical comparison, our approximations are upper bounds of
the real values. This is very important for the sake of conserva-
tive network design.

key words: loss probability approximation, waiting time proba-
bility approximation, general queueing, Chernoff bound

1. Introduction
Queueing problems are investigated for very wide

classes of input traffic and service time models to
obtain good loss probability and waiting time proba-
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bility approximation.

We first consider ATM (Asynchronous Transfer
Mode) queueing, i.e., G/D/1, because this work was
motivated by the analysis of ATM queueing. It is said
that in the ATM network, various types of bursty cell
streams from many subscribers’ terminals are multi-
plexed and transmitted. Hence, it is not expected that
such streams have renewal or markovian properties.
So, it is necessary to exploit methods to evaluate
network quality without assuming such properties.

We provide cell loss probability approximations
in two cases where the stochastic nature of the arriving
cell number is given, and next where that of the cell
inter-arrival time is given. The goal of our study is to
find a good approximation of the tail distribution of
the queue length P[Q>¢], which can be used as an
approximation of the cell loss probability.

Next, we extend our approximating method to
general queueing problems. Only the stationarity of
customers’ arrival process and the service time is
assumed. Even the independence of arrival and service
process is not required, in general. We provide approx-
imations of P[Q>g] and P[ W>w].

The Chernoff bound technique is used to evaluate
blocking probabilities in some papers. In [6], the
blocking probability at the burst level for the Poisson
traffic is approximated by the probability that the
amount of input packets exceeds some value. The tail
distribution is approximated by the Gaussian distribu-
tion, and then the Chernoff bound is applied to obtain
an upper bound of the Gaussian tail distribution. In
[7], an upper bound of the cell loss probability is
calculated for arbitrary traffic that satisfies a given
average and peak rate conditions. “The simple burst
model” is used as a traffic model and the upper bound
of the cell loss probability is shown by the combinator-
ial expression. Then the upper bound is further ap-
proximated by the use of Chernoff bound to reduce the
computational complexity.

2. Cell Loss Probability Approximation I of ATM
Queueing

We first consider the discrete time ATM queueing
system. Every cell which arrives at a single server is
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served in a constant service time according to the FIFO
(Fist-In-First-Out) discipline. The server is assumed
to have a buffer of infinite length. The unit of time is
taken to be the service time of the server for one cell.
A time interval of the unit length is called a time slot.

Let us denote by a; the number of cells which
arrives at rth time slot and @Q; the queue length at the
end of rth time slot. We assume Q,=0 for some .
This assumption is equivalent to the fact that the
average number of arriving cells is less than 1. The
queue length @, satisfies the following well-known
recursion formula:

Q:=max (0, Q;1—1) +a.. (D
By solving this recursion, we have the direct expression
of Qt-
Lemma 1: For >, we have

Qt—OSrer%xto(; ; / N Z). (2)

Proof: Write Q/=0:—
we have

Qi=max(Qi_1+ a, ai)

=max(Q}i_2+ai-1+a}, ai-1+ ai, ab)

1, ai=a;—1. Then from (1),

i

= max <,2 a}). (3)

0=i<t—to\j=t—1

We obtain (2) by rewriting (3) with Q; and a;.
Lemma 2: If{a,} is a periodic process with period T,
then for t= %+ T, we have

0=max( 3 a—i) @
Proof: (see [1])

Now, we assume that the arriving cell number {a;}
is a stationary process, i.e., the stochastic nature of
{a.} is time shift invariant. Let then initial time % tend
to —oo, then by (2), we have

i
Q:=su <,Z} _aj—i>- (5)
iz J=t—i
Since the process begins at the infinite past, Q; and
t

Z:] ‘a; are considered to be in the stationary state.
J=t—1i
Denote by Q the stationary quene length, and N; the
stationary number of arriving cells in an i-interval.
(We call an interval of length i an i-interval.) Thus, by
(5), we have

= sug)

and hence
P[Q>q]= suP

z+1'—l (6)

Ni—i)zq]. (7)

In general, however, it is difficult to calculate the
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exact value of the right-hand side of (7). In [11], the
probabilities of the type as (7) are calculated in the
cases where {a;} are i.i.d. or interchangeable random
variables. ‘
The goal is to give a good approximation of (7).
First, we provide an upper bound of (7).
Lemma 3: We have

P[Q>q]g§1P[N,-gi+q] (8)

for any ¢=0.
Proof: Let us define events 4 and A4; by A={s_1i{3(N

—i)=gq}and A;={N;—i=q}, i=1, respectively. Then
we have

P[Q>q]=P[4]

Nf%i+q].

In general, let N be a random variable taking on
integral values and P[N=m], mE Z, be the probabil-
ity distribution of N, where Z denotes the set of
integers. We define the generalized probability gener-
ating function ¥(z) of the random variable N by

T(z)a é}z P[N=m]z", 9)

if the infinite series of the right-hand side of (9)
converges. If N takes only on non-negative integral
values, the generalized probability generating function
is the usual probability generating function.

In order to estimate each term of the right-hand
side of (8), we use the Chernoff bound technique.
Lemma 4: (Chernoff bound) Let N be a random
variable taking on integral values and ¥ (z) the gener-
alized probability generating function of N. Then

PINzZFl=a ¥ (a) (10)

holds for any real number » and @, a=1.
Proof: By Markov’s inequality, for ¢>1 we have

PI[Nzr]=Pla"za"]
<a "E[a"]
=0 "0 (a).

The upper bound of (10) is the tightest if & is the
value attaining the minimum of ¢~ "¢ (@), a=1.

By summarizing above, we have
Theorem 1: Let ¥;(z) be the probability generating

function of the random variable N;, i=1, 2, ---. Then,
we have
P[Q>q]Su1(q> (11)

where



NAKAGAWA : LOSS AND WAITING TIME PROBABILITY APPROXIMATION

Ul(‘]):;ldi_(ﬁq)wi(di), (12)

and @; is the number that minimizes ¢~ 9 ¥;(a), a=
1,i=1,2,---.

2.1 Application

2.1.1 CBR Traffic with Different Periods

We consider the cell loss probability of superposed
CBR (Continuous Bit-Rate) traffic. The cell inter-
arrival time distribution of a CBR trunk is the deter-
ministic distribution. The length between two adja-
cent cells is called the period of the CBR. The queue-
ing system of superposed CBR traffic with different
periods is represented by 21D;/D/1, where D; denotes
the deterministic distribution of arbitrary cell inter-
arrival time. We consider the superposition of CBR
with »n different periods M;, j=1, -, n. The number
of input trunks with period M; is denoted by K, j=1,

n
.-+, n, and the total number of trunks K= _ZIKJ-. Then
£

the link utilization p is given by pzle,-/A/[j.

Many authors have investigated the calculation of
the cell loss probability for CBR traffic [1]-[4], 8], [9],
[12]. In [1]-[4] and [12], the authors considered the
superposition of CBR cell streams with a single cell
period, which can be represented by KD/D/1. They
obtained exact formulas of P[Q >gq], some of which
are direct formulas [1], [2], and the others are recur-
sions [3], [4], [12].

In [2], an asymptotic method is used to approxi-
mate P[Q>g]. The obtained formula is a very simple
function of ¢, and therefore the computational time
complexity is practically on the order of constant.
That asymptotic method gives a good approximation if
the link utilization is high, but otherwise it does not.
Unfortunately, the formula in [2] gives a lower esti-
mate for P[Q>g¢] in many cases, hence it is not
appropriate to use it for designing network system
parameters.

It is not possible to apply the above-mentioned
formulas ([1]-[4], [12]) to the case of superposing
CBR traffic with different periods.

In [9], on the other hand, the cell loss probabil-
ities for CBR with different periods are studied and
upper and lower bounds of P[Q>gq] are obtained.
From the viewpoint of computational complexity;
however, it is difficult to apply this result when the
number of different periods is large. Because in order
to obtain the upper bound by the method of [9], the
probability density functions of arriving cell numbers
on all the CBR trunks should be convoluted. This
requires considerable computational complexity.

In the case of CBR with different periods, exact
calculation formulas of P[Q > ¢] are not known except
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for very limited cases [8].

Now, in order to apply our Theorem 1 to the
calculation of the cell loss probability approximation
of 2D;/D/1 queueing, the probability generating
functions of cell arriving numbers should be calcu-
lated.

Let N’ denote the number of arriving cells from
a single CBR trunk with period M; during an i-
interval, and ¥{"(z) the probability generating func-
tion of NP, i=1,2,-,j=1,, n, ie.,

T (2) = 3 PING=m]z". (13)

In this case, &P (z) is easily calculated:
Wy L | 1 1
v () =( 4y, ~| 31, b

_ i i L+I
+<1 W J{ MjDle,l : (14)
where | x | denotes the maximum integer not greater
than x. The probability generating function ¥;(z) of
N; is given by the product of all T (z):

v =1L o ()% (15)

The upper bound w#(g) is obtained by substituting
(15) into (12).

Particularly, let us consider the homogeneous CBR
traffic with a single period M and the number of trunks
K. The condition K<M is assumed for system’s
stability. By Lemma 2, we have

Q=0§3§(M+1—i), (16)
and then
P[Q>q]=P| max (N;—1) 2¢]. (17)

Since N;=K,i=1,-, M,ifi>K—q we have N;—i<
g. Thus the maximum in (17) is not attained by i>
K —gq. So, in the homogeneous CBR case, we have

P[Q>g]=P| max (N;—i)zq| (18)
éKgqu[NigH—q]. (19)

The probability generating function &;(z) of N; is

wi(z)=<—’j"4z+1——’ﬂ'4>1{,r i=1, K—gq. (20)

Hence by Theorem 1, the upper bound wu;(q) in the
homogeneous case is explicitly written as

wi)=(37) 5 (% =) )

(21)

where (M — K +¢q/0)° is assumed to imply 1.
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2.1.2 M/D/1

Let us consider M /D/1 queueing system. The proba-
bility generating function ¥;(z) of the arriving cell
number N; during an i-interval of the Poisson traffic at
the mean arrival rate o is given by

Ui(z) =€V, j=1,2, - (22)

Hence, we have the upper bound #(g) as

w(q)= Z( l+iq >i+qei+q"°i (23)

for any integer ¢ >0.
The exact survivor function P[Q>¢q] of M/D/1
queueing is known [9] as

PLO>ql=1-(1-0) S exp(a). (24

We will later give numerical comparison of our
approximation and the formula (24).
Remark: The formula (24) is not suitable for stable
calculation because positive and negative numbers of
large absolute values are added alternatively. In the
real computation, the following stably computable
formula (see [5]) is used;

g
PIO>q]=1-2p; (25)
where p;=P[Q=j], which is calculated recursively by
n=1-p, p1=<1—p)(—1+e”),
(=p)* P>
;§1e (k—l)' Di—n, JZ2. (26)

2.1.3 AR(1)/D/1

Next, we consider the case where the input process is

represented by a time series analytic model. Suppose
the input process {a;} is represented as

a=p+¢&,

Ei=b&i1t e, 27

where o is the mean arrival rate of {a,} and b is a
constant, ||<1, and {e;} are i.i.d. Gaussian random
variables whose means are 0 and the variances are ¢*
i.e., & N (0, 6®). The process {£:} defined by (27) is
called an AR (1) process, or autoregressive process of

order 1. It is known that {&:} has the stationary
representation
&t ngiet_j, (28)

(see, for example, [10], pp. 391).
Hence, by calculation, we see that the mean of N;
is pi, and the variance ¢? of N; is
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o?=Var(N;)

_o* 1
T8

w((l—bz)i—ﬂ)(l—b")).

Hence, we see that N; satisfies N;--- N (pi, 0%

In general, for a continuous random variable X
taking on real values with probability density function
p(x), the generalized probability generating function
Ux(z) of X is defined by

Ty (z) =E[z*]= f “Zp(x) dx. (29)

By slightly modifying the proof, we see that the
Theorem 1 holds for continuous random variables.
Therefore, we have the upper bound u (g) of P[Q >¢q]
of AR(1)/D/1 as follows:

P[Q>q]§_u1(q) =i§1€_(q+i_pi)2lwﬁ' (30)

3. Cell Loss Probability Approximation II of ATM
Queueing

In this section, we provide an upper bound of P[Q >
q] in the ATM queueing system when the cell inter-
arrival time distribution is given.

Let Q, denote the number of cells that are already
in the buffer when the nth cell arrived, and #, the
arrival time of the nth cell. Denote by = t, - t,—1 the
inter-arrival time between snth and n— Ith cells. We
have the recursion formula of {Q,};

0,=max (0, Qn1+1—1,). (31)

Let us denote by Q the limit of Q, as » tends to
infinity, and U,= ZE) (1—zi1) =n— Z}ln, n>0, Uy=0.

By solving (31), we have the direct expression of Q

(see [5]);
—su}g U,. (32)
Then, we have an upper bound of P[Q>¢q].
Theorem 2: Write ¥, (z) the probability generating

n
function of the random variable X r;, then we have
=1

P[Q>ql=u(q), (33)
where

u:(q) ZnEqa,’i“’ ulant), (34)

and @, is the value of ¢ that minimizes ¢ /¥, (a ™),

n>gq.
Proof: From (32), we have

PLo>al=|sup(nFn) ]
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< St (a5, 3

Notice that the generalized probability generating
function of —Xz; is T (z7Y).

3.1 Application to M/D/1

We apply Theorem 2 to M/D/1 queueing where the
cell inter-arrival time is described by the exponential
distribution. The probability generating function
¥ (z) of the exponential distribution at mean 1/p is

¥(z)=p/(p—logz) and that of é}lri is n(z)=

U (z)=(p/(p—logz))" Hence, we have the upper
bound u;(q) of M/D/1 cell loss probability as fol-
lows:

u:(q) = 2 e"*ﬂ<"~q><—p (n=g) ) (36)
n>q n
We find that the upper bound (36) is the same as
(23).

4. Loss Probability Approximation of G/G/1

We extend the above approximation methods to gen-
eral queueing problems, i.e., G/G/1.

We first study the case where the input traffic and
the service time are both stationary and mutually
independent. The independence assumption is not
essential, however, it is assumed in this section, because
the independent case gives us simple calculation
results. We will later discuss the general case (non-
independent case). ‘ .

Let us denote by ¢ the discrete time. Customers
are served in the FIFO discipline by a single server
with a infinite length waiting room. Denote by a:, b,
and Q; the number of arriving customers at rth time
slot, the number of customers served at zth time slot,
and the queue length at rth time slot, respectively.
(First, customers arrive, second, queue length is
counted, and then customers are served.) We assume
Q:,=0 for some #%. Then we have the fundamental
recursion

Q;=max (0, Qt—l_bt—l) + a:. (37)
The recursion (37) leads to the direct expression;
14 t—1
0= max (3 a5 b)) (38)
O0=si<t—to\j=t—1 J=t—i

The empty sum in (38) is assumed to imply 0. Let us
denote by Q the stationary number of customers in the
queue, N; the stationary number of arriving customers
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during an i-interval and L; the stationary number of
customers served during an i-interval. Further, denote
by @y, (z) and ¥,(z) the probability generating func-
tion of N; and L., respectively. Then we have the
following equation in the same way as (7).

Q:Sz‘liP(Ni_Li_l)’ Ly=0 (39)

Hence, we have

Theorem 3: For stationary input traffic and service
time which are mutually independent, the loss proba-
bility is bounded by

P[OQ>ql=us(q). (40)
where
us(q) =2 ar "V Uy (a) U, (e ), (41)

izl

and ¥y, (z) and ¥;,(z) are the probability generating
functions of the stationary number N; of arriving
customers and the stationary number L; of served
customers during i-interval, respectively. Further, ¢; is
the number that minimizes ¢~V @y, (@) T, (a™Y), a
=1,i=1,2,--.

Moreover, we can eliminate the independence
assumption of the input traffic and the service time. If
the joint distribution of the input and the service time
is given, an upper bound can be obtained in the same
way as above with Chernoff bound technique.

4.1 Application to M/M/1

Let us apply Theorem 3 to M /M /1 queueing. The
numbers of both arriving and served customers are
Poisson, thus we have ¥y, (z) =e”“*™V and ¥, ,(z7")
=D& ywhere p and y are the mean values of
the two Poisson distributions, respectively.

Then the loss probability of M /M /1 is bounded
by

< — —(g+1) ,pi(a:—1)+p(i-1)(a:"1-1)
PO >ql=us(q) ZZ;I(L e ,

(42)

where a; is the positive root of the equation pia®*— (g
+1Da—pu(i—1)=0.

We will compare this bound with the exact value
P[O>q] of M/M/1, that is,

Plo>ql=(£)" (43)

5. Waiting Time Probability Approximation of G/
G/1

We consider here the waiting time of a customer of G/
G/1 queueing system.,

Let us denote by ¢, the service time of the nth
customer, 7, the inter-arrival time between nth and
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n— 1th customers, and W} the waiting time of the »nth

customer. Then we have the fundamental recursion
formula:
VVn=maX(O, m—1+0n—1_fn)- (44)

We assume that the service time and the inter-arrival
time are stationary and mutually independent. Write

= Z‘i (0i-1— 1), n>0, V,=0, then we have the direct
expression of the stationary waiting time W [5];
W= sug; Va. ‘ (45)

Denote by S, the stationary service time for con-
secutive n customers, 7, the stationary inter-arrival
time between kth and k- nth customers. Then, in the
same way as the previous discussion, we have

P Ww> w]=P[§115> Vo> w]

= 'LZZIIP[S,Z— T,>wl.

We write &37(z), ¥F(z) the probability generating
functions of S,, T, respectively. Then we have
Theorem 4: For stationary service time and inter-
arrival time which are mutually independent, the
probability that the waiting time is more than w is
bounded as follows.

Pl W>w]<u(w), (46)
where
u4(W) :Ela;w w‘nd(an) w;f(a’;l) s (47)

and @7(z) is the probability generating function of the
stationary service time S, for consecutive n customers,
Ui (z) is that of the stationary inter-arrival time 7,
between kth and k + nth customers. Further, @, is the
value of ¢ that minimizes ¢ * &% (@) Tf (a™Y), a=1, n
=0,1, .

5.1 Application to D/M /1
Let us consider the D/M /1 queueing. Denote by p the

mean arrival rate and x the mean service rate. In this
case, we have UTf(z)=z"" and WI(z)=(u/(u

—logz))”™ Hence the upper bound us(w) is
u(w)=3 <£+ﬁw>"e—#w+<1—p/p>n. (48)
nz=z1\ O n

The exact formula of P[ W> w] of D/M /1 queue-
ing is given [5] by

P W>w]=gp'+, (49)
where 7 is the unique solution of the equation

p=e rI=Me O p< 1. (50)
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6. Heuristic Modification

From detailed and extensive numerical comparison
between obtained upper bounds and the exact formulas
or simulation, it seems that log P[Q >q] is approx-
imated well by log u,(q) +constant, k=1, 2, 3. Simi-
larly, log P[ W> w] is approximated well by log u(w)

+constant.  Thus we here make the following
modification: -
ﬁk(Q)zcouk(q), k:]-) 27 37
iy (w) = Cous(w). (51)

T ul@@ —
— o exactformula

'I'f'
%mwsom

by, (1000, 800)
\ (1000, 700)
\ (1000, 30T) ‘\

§

0 10 20 30 40 50
queue length q

7

log10 P[Q>q]
o

'
-
3.}

=20

Fig.1 Homogeneous CBR traffic; Comparison between #;(g)
= (X (21) and Bhargava’s exact formula (52) with parameters
(M, K), where M is the period of a CBR trunk and K is the
number of trunks.

where G=P[Q>0]/u.(0), k=1,2,3 or G=P[W>
0]/u4(0). We show the numerical calculation results
of @,(g) and #,(w) in Figs. 1-7 to compare with the
exact formulas or computer simulation.

7. Numerical Results

In this section, the obtained approximation #,(q), i=

,3 and @,(w) are compared numerically with
P[Q>q] or P[W>w] for the queueing systems
treated in the above sections.

In Fig. 1, we show the comparison of the approxi-
mation @ (g) = CyX (21) and the exact formula of the
cell loss probability of the superposed homogeneous
CBR traffic with period M =1000 and the number of
input trunks K=300, 700, 800 and 900. The exact
formula of the homogeneous CBR given by Bhargava

[1] is

P05 q]= ZM(J )
+q
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—— U1(g)

—°— simulation

RS-
"
NN

\ \ ?%00,400; 2000,800) '
\ NN

(1000,150; 2000,300) l1 000,350, 2000,700)
Lt l

12 ! |
0 10 20 30 40 50

queue length q

)
N

]
-

log10 P[Q>q]
&

1
[}

[
-
(=}

Fig. 2 Non-homogeneous CBR traffic; Comparison between
#Z;(q) and the computer simulation with parameters (M, K;;
M,, K), where M, is the period and K; is the number of trunks
with period M;, i=1,2.

—— Ti(q)

—— exactformula

:1 \%M
R e, 09
-3 \ wo%;:

F L, N
AN N
TR N
3 N SN
e TN
| NN ‘“\}Q

. R

-10
o 10 20 30 40 50
queue length q

Fig.3 M/D/1; Comparison between i(g)=CX (23) and
the exact formula (24) with parameter p, where o-is the mean
arrival rate of Poisson.

;i \J+aq s \K—-j—q
-4

In Fig. 2, we show the comparison of the approxi-
mation #;(g) and the simulation result of superposed
non-homogeneous CBR traffic with two different
periods M;=1000, M,=2000 and the number of trunks
K;=150, 350, 400 and 450, K>=300, 700, 800 and 900.

In Fig. 3, we show #;(q) = C; X (23) and the exact
formula (24) of M /D/1 with the mean arrival rates p
=0.3, 0.7, 0.8 and 0.9.

‘In Figs. 4 and 5, we show the results of the AR
(1)/D/1 queueing. The approximation #;(q) = CyX
(30) and the simulation results are shown in the cases
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| 1
S
w
o
»
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X

©
Fo—*]

w
\(0.7. 0.3,0.7)

10 20 30 40 50
queue length q

ry
o

Fig.4 AB(1)/D/1; Comparison between ;(g)=CyX (30)
and the computer simulation with parameters (p, b, ¢), where p
is the mean arrival rate, b the AR coefficient, and ¢ the standard
deviation of the innovation process. (b=0.3, ¢=0.7).

0 —e— () —

—°— simulation

T,

VLN

L

HEL
AP

-6
0 10 20 30 40 50
queue length q
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Fig.5 AR(1)/D/1; Comparison between ;(q)=CyX (30)
and the computer simulation with parameters (p, b, g), where p
is the mean arrival rate, b the AR coefficient, and ¢ the standard
deviation of the innovation process. (6=0.5, 0=0.7).

where the mean arrival rates 0=0.3, 0.7, 0.8 and 0.9,
and the AR coefficients 5#=0.3 and 0.7. The standard
deviation ¢ of the innovation process is 0=0.7.

In Fig. 6, we show the approximation i3 (gq) =G
X (42) and the M /M /1 exact formula (43) with the
mean service rate #=1 and the mean arrival rates p=
0.3, 0.7, 0.8 and 0.9.

In Fig. 7, we show the comparison of #;(w)=C,
X (48) and the D/M /1 exact formula (49) in the cases
u#=1 and p=0.3, 0.7, 0.8 and 0.9.

In all cases, we see that i, (q) @, (w) approximate
well the exact value or the simulation results of
P[Q>q] or P W>w].
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Fig.6 M /M /1; Comparison between @I3(g)=CyX (42) and
the exact formula (43) with parameters (o, ), where p is the
mean arrival rate and g is the mean service rate.
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Fig. 7 D/M/1; Comparison between ii,{w)=CyX (48) and
the exact formula (49) with parameters (p, 1), where p is the
mean arrival rate and y is the mean service rate.

8. Conclusion

Four kinds of approximation are presented for the loss
survivor function P[Q>¢q] or the waiting time survi-
vor function P[ W> w] of general queueing problems.
The assumption on the input traffic and the service
time process is only the stationarity, even the indepen-
dence of the input and the service is not assumed.

We showed the comparison between our approxi-
mation and the exact formula or the simulation results
of P[Q>q] or P[ W>w] in the cases of homogeneous
CBR traffic, non-homogeneous CBR traffic, M/D/1,
AR(1)/D/1, M/M/1 and D/M /1. We confirmed
that, in all cases, #.(g) and #,(w) approximate the
real values well.

One of the other advantages of our approximating
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method is that it is applicable to arbitrary type of
independent superposition of input traffic, such as D
+ M+ AR(1)/G/1, and so forth. For, the probability
generating function in the expression of @x(q) is
obtained by the product of all input traffic’s probabil-
ity generating functions. Hence, it is widely applicable
to the analysis of so called multi media traffic. In a
further study, we will apply #.(q) and @,(w) to wider
classes of input and service time processes.
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