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G/D/1 Queueing Analysis by Discrete Time Modeling

SUMMARY G/D/1 is a theoretic model for ATM network
queueing based on processing cells. We investigate the G/D/1
system by discrete time modeling. Takacs’ combinatorial methods
are applied to analyze the system performance. An approxima-
tion for the survivor function P[Q > g], which is the probability
that the queue length @ in the stationary state exceeds g, is ob-
tained. The obtained formula requires only very small compu-
tational complexity and gives good approximation for the true
value of P[Q > g.
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1. Introduction

In the ATM network, since a cell is the unit of transmis-
sion and exchanging, the processing time for one cell is
commonly used as the unit of time. Therefore, in order
to evaluate system performance, for example, cell con-
gestion, cell transmission delay, and so on, the queue-
ing theoretic model G/D/1 is investigated. Among the
models belonging in G/D/1, M/D/1 model is espe-
cially the most fundamental and important one. Vari-
ous types of cell traffic models based on bursty nature of
cell streams are proposed and studied, however, many of
them are elaborate to handle. Furthermore, the statisti-
cal nature of future cell traffic is unknown, so it cannot
be determined at this point of time. Hence, it is very
common to use M/D/1 model to analyze the system
performance in the real system design[5].

In this letter, we investigate G/D/1 queueing by the
discrete time modeling to obtain an approximation of
the survivor function P[Q > ¢|, that is the probability
that the queue length @) in the stationary state exceeds q.
We confirm the accuracy of our approximation by com-
parison with the exact formula or simulation, especially
for M/D/1, Hy/D/1 and E5/D/1 systems.

2. Discrete Time Modeling

Takécs [4] investigated the probability distribution of
the maximum value of a random variable which takes
non-negative integral values using the combinatorial
method. We apply the results of Takéacs to queueing
problems to obtain an approximation of P[Q > g] of
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G/D/1 systems. Takacs’ theorems have sometimes been
applied to queueing problems[1]. Our approach is to
apply Takécs’ theorem on the waiting time probability
to obtain an approximation value of P[Q > ¢].

We study a single server queue with infinite length
buffer. The unit of time is the service time for one cell
and the time axis is divided into intervals of the unit
time length. Each interval is called a time slot.

2.1 Queue Length Distribution

Let p denote the average number of arriving cells dur-
ing one time slot. For the stability of the system p < 1
should hold. Let @Q; denote the queue length at the
beginning of the ¢ th time slot, and a; the number of
arriving cells during the ¢ th time slot. If the system is
not empty, one cell is served at the end of the slot. We
have the following recursion for a; and Qy;

Qi1 =max(0,Q: —14+as), Qo=0 0

Iterative operations lead to the solution;

(ax — 1), )

where the empty sum implies 0. If {a;} is an i.i.d. se-
quence, then we can derive the following approximation
of P[Q > q].

Let ) denote the stationary queue length, i.e.,
@ = limy_, 0 @4, then for @ > 0 we have by (2),

Q = sup (A; — 1), (3)
=1

where A; denotes the stationary number of arriving cells
during consecutive i time slots. By applying Takacs’ the-
orems ([4] p.15, Theorem 3, p.17, Theorem 4) to (3), we
have

oo

PR>q =(1-p)y PlAi=i+q+]] 4)
i=1
=1-rg4 (5
where 74 is defined by
1-pX() _ ¢
orree ;Orqzq )
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with ((z) the probability generating function of a;. The
formulas (4) and (5) are exact formulas of P[Q > ¢,
however, they are not suitable for real computation be-
cause they require much computational time. We want
a more tractable formula (which may not be exact).

2.2 Waiting Time Distribution

Let W,, denote the waiting time of the nth cell, 7,, the
inter- arrival time between nth and (n + 1) st cells. We
then have the following recursion;

Wpi1 =max(0,W,+1—-7,), Wo=0 (7

The solution of (7) is given by

n—1

(1= 7%), ®)

=1

W, = max
0<in

where we assume that the empty sum implies 0. From
now to the end of this paper, we assume that {7,,} is
an i.i.d. sequence. Let W denote the stationary waiting
time, i.e., W = lim,,_,oc W,,. For W > 0 we have by (8)

W =sup (i — Tj), ®
i>1

where 7; denotes the stationary inter-arrival time be-
tween nth and (n + ¢)th cells. By applying Takacs’ the-
orems ([4], p.24, Theorem 1, p.25, Theorem 3) to (9),
we have

PW > u Z w+1

Jj=w-+1

= §wtl (11)

Ty=j—w-1 (10)

where ¢ is defined as the minimum positive root of the
eq. m(6) = § with 7(z) the probability generating func-
tion of the cell inter-arrival time.

The formula (11) requires only small computa-
tional complexity, but our goal is P[Q > ¢g]. We modify
the idea leading (11) to obtain an approximation of

PlQ > q].
3. Approximation of P[Q > ¢

The cell loss probability is one of the most important
performance measures in the ATM network for the de-
sign of network parameters. The cell loss probability of
a system with a buffer of size ¢ + 1 is bounded above
by P[Q > g] of the model with an infinite length buffer.
Our goal is to obtain a good approximation of P[Q > ¢]
that requires small computational complexity. The au-
thor [3] obtained a good approximation of P[Q > ¢
of a general G/G/1 system which is, of course applica-
ble to G/D/1, however, it requires much computational
complexity.

Now, we give an approximation of P[@ > g] by ap-
plying Takacs’ theorem. The only assumption we need
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is that {7,} is i.i.d., where 7, is the inter-arrival time
between nth and (n + 1)st cells. Because we assumed
in our G/D/1 model that the system’s unit time equals
the service time for one cell, when a cell just arrived the
number of cells in the buffer equals the waiting time of
that cell. Based on this observation, we here propose
an approximation;

§a+1

PQ>q~ (12)

where p is the mean cell arrival rate and 6 the minimum
positive root of the eq. 7(§) = § with n(z) the probabil-
ity generating function of cell inter-arrival time.

3.1 M/D/1

The exact formula of P[Q > ¢| of M/D/1 model is
given by

PR>d=1-(0-n> T (o) (13)

= (a—J)
from (4) and Jensen’s eq.
o~ (@0 (g _ L
— e \® =—. 14
2 [T 1-b (14

j=0
The formula (13) is not suitable for real computation
because (13) includes the alternating addition of posi-
tive and negative numbers of large absolute values. A
more effective algorithm is the following;

q
PQ>q=1-> p; (15)
§=0
where p; = P[Q) = j] and
Pozl—P, p1=(1-p)(=1+e"),
p)F-1
Zep oo DyiPi 122 (16)

An approximation of P[Q > ¢| obtained by the au-
thor[3] is

2,1—p -\ itg
p-e pr i+q—pi
PlR>q~ pZ(Hq) et (17)

The above formulas (13), (15) and (17) require much
computational complexity. Moreover (15) has a prob-
lem of under flow when we compute them by a com-
puter. Each term in the summation of (15) is small for
large ¢ and j. So, for any ¢ and j sufficiently large, the
terms are regarded as O because of the precision limit
of the computer. For example, if p = 0.8, we have the
same values of P[Q > g for any ¢ > 70.

Our formula (12) applied to M/D/1 is P|Q > q] =
8971 /p where p < 1 is the mean cell arrival rate and § is
the minimum positive root of the eq. §(p — log§) = p.

We will show in Fig.1a comparison of the exact
formula and our approximation (12).
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Fig. 1 Approximation of P[Q>q] of M/D/1.
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Fig.2 Approximation of P[Q > ¢] of H2/D/1 with tho [=1.0,
rho2=0.1, pI=0.5-0.9.

32 Hy/D/1

Hj, denotes the hyperexponential distribution whose
probability density function is the mixture of k prob-
ability density functions of exponential distributions.
Let p; denote the mean of each exponential distribution
and p; the mixture probability, s = 1,---,k. Then our
approximation becomes §971 /p where § is the minimum
positive root of the equation. ‘

k

DiPi
— =4 18

We will show in Fig.2 the comparison with computer
simulation.

33 Ey/D/1

E; denotes the k-Erlang distribution, i.e., it is the dis-
tribution of the sum of k random variables that are
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Approximation of P[Q > q] of E2/D/1 with tho=

dominated by exponential distributions of mean p/k.
Our approximation is §¢**/p where § is the minimum
positive root of the equation.

(-2

pk —log 6
We will show in Fig.3 the comparison with computer
simulation.

V=6 (19)

4. Conclusion

We proposed in this letter an approximation of the
P[Q > q] which requires only small computational
complexity. We confirmed the accuracy of the approxi-
mation by comparison with the exact formula or simula-
tion in the case of M/D/1, Hy/D/1 and E2/D/1. The
technique derived in this paper is applicable to other
G/D/1 or D/G/1 systems.

Further study is necessary to develop a good ap-
proximation of the P[Q > ¢] of G/G/1 systems.
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