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|PAPER Special Section on Information Theory and Its Applications |

On the Twisted Markov Chain of Importance Sampling

Simulation

SUMMARY The importance sampling simulation technique
has been exploited to obtain an accurate estimate for a very
small probability which is not tractable by the ordinary Monte
Carlo simulation. In this paper, we will investigate the simula-
tion for a sample average of an output sequence from a Markov
chain. The optimal simulation distribution will be characterized
by the Kullback-Leibler divergence of Markov chains and geo-
metric properties of the importance sampling simulation will be
presented. As a result, an effective computation method for the
optimal simulation distribution will be obtained.

key words:  importance sampling, Markov chain, Kullback-
Leibler divergence, large deviations theory, information geometry

1. Introduction

The Importance Sampling (IS) simulation technique has
been exploited to obtain an accurate estimate for a very
small probability which is not tractable by the ordi-
nary Monte Carlo (MC) simulation. The IS technique
is widely used for various types of engineering prob-
lems, e.g., for estimation of the blocking probability
in queueing system [2],[4],[7],[12],[13],[15], the error
rate in communications system [2],[6],[8], etc. See[2]
for overview of the application of the IS simulation.
In case that the target event (a blocking in queueing
Or an error in communications system) is a rare event
with small probability of the order less than 1075, it is
impossible to obtain an estimate by the ordinary MC
method. The MC method requires considerable amount
of computation time. To overcome this difficulty, the
underlying probability distribution is modified to gen-
erate more samples in the target event. Then the samples
obtained by the modified distribution form an unbiased
estimate of the true probability. This estimate is called
an IS estimate. The modified distribution is called a
simulation distribution. If the simulation distribution
is appropriately chosen, the variance of the IS estimate
can be smaller than that of the estimate by the ordi-
nary MC simulation. The simulation distribution that
yields the IS estimate with the minimum variance is re-
ferred to as the optimal simulation distribution. When
we apply the IS technique to some simulation prob-
lems, it is critical to find the optimal simulation distri-
bution. It has been known [2] that, for Markov chains,
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the optimal simulation distribution exists in the class of
twisted Markov chains (TMC). But, in general, in order
to have the optimal simulation distribution, we must
compute an eigen value and an eigen vector of a matrix
and solve an optimization problem concerned with the
eigen value. Thus, it is very hard to obtain the optimal
simulation distribution in this way even if we use the
numerical computation.

In this paper, we will characterize the TMC’s by
the Kullback-Leibler (KL) divergence of Markov chains
and then clarify the relation between the underlying
Markov chain and the optimal TMC. Further the geo-
metric properties of the importance sampling simulation
will be presented. As a result, an effective computation
method will be obtained for the optimal TMC.

2. Importance Sampling Simulation

We will show a fundamental form of the importance
sampling (IS) simulation technique.

Let X denote the Gaussian random variable with
mean 0 and variance 1, i.e., X ~ AN (0,1). Forc > 0, let
us consider the estimation of the probability P(X > ¢)
by the ordinary Monte Carlo (MC) method. Denote by
R the set of real numbers. Define the indicator function
I(z) of theset {z € R | z > ¢} by

1, T >c,
Le(z) = { 0, =z<ec ()
Let z1,29,- -,z be k independent realizations of X.

We have the MC estimate of P(X > ¢) as follows;

P(X >¢)~

| =

k .
=1 )

If ¢ is large, the set {X > c} is a rare event. Hence,
to obtain a stable estimate of P(X > ¢), the number
k of generating random numbers should be large. For
example, if ¢ = 10, P(X > 10) = 7.6 x 10724, We must
have, at least, k = 10%°, however, the generation of 10%°
random numbers is impractical.

There is another limit of the ordinary MC simu-
lation owing to the precision limit of pseudo random
numbers. Let us consider to generate X ~ N(0,1) by
the well-known Box-Miiller method;

X = +/—2loguq cos 2mus, 3)



1424

where u1 and us are the uniform random numbers
on the interval (0,1] and the log is the natural loga-
rithm. Let U denote the pseudo random integer gen-
erated by a computer with range 0 < U < 32767.
Putting u; = (U + 1)/(32767 + 1), we apply the Box-
Miiller method. It is readily seen that |X| < 4.57(=
/—21log(1/32768)). Thus, if ¢ > 4.57, no sample X;
is in the range {X > c}. It is absolutely impossible
to have an estimate of P(X > ¢) by the ordinary MC
method.

We here apply the IS technique. Write X* = X +¢,
ie, X* ~N(c,1). Let p(z) and p*(z) denote the prob-
ability density functions of X and X*, respectively. Let
xy, x5, -,z be k independent realizations of X*. The
IS estimate of P(X > ¢) is given by

k *>
Z 2 4

’L

P(X >c¢)~

?r‘l»—l

Since many samples z; are in the range {X* > c}, the
difficulties of the ordinary MC method are overcome.
We can see that the IS estimate (4) is an unbiased es-
timate. It has been proved that p*(z) is the optimal
simulation distribution among the Gaussian distribu-
tions[2].

3. IS for Markov Chains

We will investigate the simulation for a sample average
of an output sequence from a finite state Markov chain.

Let P, denote an irreducible Markov chain on
the state space @ = {0,1,---,K}, K > 0. The
state transition probability matrix of P, is denoted by
Py = (Po(2'|))s 2 en. and the initial distribution is
given by the stationary distribution py = (po(2))zecq
of Py. The joint probability of z,z' € Q is denoted
by Po(z,z') = po(z)Po(z’|z). Consider a mapping
f:QxQ — Z, where Z is the set of integers. De-
note by Ep,[f] the expectation of f with respect to Py;

Z Py, 2" ) f(z, 2"). &)

z,z’ EQ

EPU [f

Assume Ep,[f] = 0 without loss of generality.

Let " = (z1,22, ', %,) € Q™ be a sample se-
quence generated by the Markov chain Fy. We consider
the probability of the following set A,,;

={z" Q" | Zf Ty, Tig1) >cCh,
(6)
Write o, = FPy(An) = Y gpnecan Po(x"), where
Po(x™) = po(z1)Polas|z1) - Po(zn|zn-1). We see

from large deviations theory [2], [6], that the asymptotic
of the «a, is given as follows. For ¢t € R, denote by A;
the largest eigen value of the matrix
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(PO($/|I)6tf(m’xl))$7w’69- (7)

From the Perron-Frobenius theorem[2], we can see that
At 18 a positive eigen value with multiplicity 1. For
y € R, the rate function I(y) is defined by

I(y) = sup. _(yt—logAy). (8)

—oco<t<L

The rate of the exponential decay of «,, is represented
by the rate function.

Theorem 1: (Large Deviations Theorem[2]) We have
1
11m ——logan—l() O

The asymptotlc behavior of «,, is described by this
theorem, however, it is often necessary to have the ac-
curate value of «,, for some finite n. We need to use a
stochastic simulation to have «,,.

A twisted Markov chain (TMC) [2] for the under-
lying Markov chain Fy is the Markov chain P, defined
by

7
Py(z'|z) = Py(a'|z)et! &) wi(') ) 9
42| z) = Po(a'|x) e ©)

z,2' €, tc R,

where w; = (w,(z))zecq is a right eigen vector associated
with ;.

Consider the IS simulation with a Markov chain
P. Let X*" = (X7,---,X}), n=1,2,---, be a ran-
dom sequence generated by the Markov chain P, and
", 25", xf" € Q" be k independent realizations
of the random variable X*". The IS estimate &, (P) of

o, with simulation distribution P is given by

Po(il}*n)

ZIA x" —*W =1,2,---,

(10)

where T4, is the indicator function of the set A,,. We
will see in next chapter that the TMC is a candidate of
the optimal simulation distribution.

4. The Optimal Simulation Distribution

Since the estimate &, (P) of (10) is an unbiased estimate
of ar,, we will next investigate the variance V[&,, (P)] of
an(P). We would like to have the Markov chain P
that minimizes V[&,(P)]. We here constrain the range
of minimization of V[&,(P)] to the same type of ir-
reducible Markov chains P as the underlying Markov
chain F,.

The unconstrained minimization of the estima-
tor variance is easily obtained by elementary calculus,
however, the resultant simulation distribution is not
Markov, nor stationary. Moreover, obtaining the un-
constrained optimal simulation distribution requires the
knowledge of the target probability itself[2].

For a Markov chain P and s € R, denote by (, the
largest eigen value of the matrix
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/ 2
<P0($l|x) esf(z‘,z )) ) (11)
P(z'|z) oo €D
Define
Jr(y) = sup (ys —log(s), y € R. (12)

The following theorem holds from large deviations the-
ory.

Theorem 2: (See[2]) For the variance V[&, (P)] of the
IS estimate &, (P), we have

hm<——bgkvmnuﬂ]:Jp@% (13)
where ¢ is the value in (6). a

The optimal simulation distribution P is the Markov
chain that minimizes the asymptotic of the estimator
variance, more precisely, that maximizes Jp(c).
Theorem 3: (See[2]) We have

Jp(c) < 2I(c). (14)

The equality holds if and only if P = P, that
is the TMC with t* attaining the suprimum of
SUP_ oo cpcoo(Ct — lOg Ay). |

In summary, we have the optimal simulation distri-
bution as the TMC with ¢* determined by Theorem 3.
We can see that t* satisfies

a

t=t*

where the differentiability of A\; is shown by Lemma 3
in [10].

5. Characterization of the Optimal Simulation
Distribution by Kullback-Leibler Divergence of
Markov Chains

When applying the IS technique to simulation prob-
lems, it is the most important to determine the optimal
simulation distribution. But in Markov chain case, it
is very difficult to have the optimal Py« by Theorem 3
because of the computation of the eigen value and the
eigen vector and the optimization of the eigen value.
Less complex algorithm is necessary to obtain P;.. The
optimal simulation distribution of the IS for i.i.d. case
is easily obtained [2]. The explicit form of the optimal
simulation distribution for Gaussian, Laplacian, and
Bernoulli cases are given in [2]. The relation between
a twisted distribution and the Kullback-Leibler (KL)
divergence in i.i.d. case is discussed in [4].

We will provide, in this chapter, a characterization
of the optimal simulation distribution P~ by the KL
divergence of Markov chains. Further, the geometric
aspect of the TMC will be discussed in next chapter.

First, we have
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Lemma 1: Let W, = (w;(z))yeq denote a left eigen
vector of the matrix (7) associated with A; and recall
that wy = (w:(x))zeq is a right eigen vector. The w; is
assumed to be normalized as ) . Wi(z)w(z) = 1.
Consider the TMC P, defined by (9). The station-
ary distribution p; = (pi(z))zcq of F; is given by

pe(z) = We(x)we(z), = € Q. O
Proof. By the definition of w; and w;, we have
> Pl |z)we(z)wi(2) (16)
zed
=" Po(a'e)e Ny (2w, (o) (17)
zeQ)
= Wy (x' )w(z). (18)
So, Wy(x)w(z) gives the stationary distribution of ;.
O
Lemma 2: For the optimal simulation distribution
P+, we have Ep,. [f] = c. O

Proof. Since w, is a right eigen vector associated with
A+, we have

S A

z' €

2)e @y, (2) = Nwy(z), © € Q. (19)

By differentiating the both sides of (19) with respect to
t, we have

PIRLIC
z' €

n dw (.’El)
+e 7 }

Na){f(z, 2" )et! @ D, (2)

_dh dwy(z)
= ) A=

Multiplying the both sides of (20) by w;(z) and taking
the summation with respect to x € §2,

Z Py(z |9U JAvw(z )f(m,fﬁl)ﬁt(m)

z,x’' €Q

+)\t Z dw;(txl) Q’Et(xl)

' €Q

Cl)\t Z wt

zeQ z€EQ

, Q. (20)

Hence from Lemma 1, we have
dA
A D Plea)f(ea) = == (22)
z,x' €N
Substituting t = t* into (22), we see that
EPt* [f} = Z Pt* (.15, x')f(:c, z’
z,z’' €Q

holds from (15). ]

)=c (23)
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For two Markov chains P = (P(z'|z)), . eo and
Q = (Q(z'|z))s,2ca, we will define the KL divergence
D(P||Q). Let p = (p(x))zecq denote the stationary dis-
tribution of P and P(z,z') = p(z)P(z'|z) denote the
joint probability of z,z" € Q. Note that

Z P(z,x') = Z P(z',z) =p(z), € Q. (24)
= z'eQ
If P(z'|z) = 0 holds for any z, 2’ €  with Q(z'|z) =0,
we write P < @Q and say that P is dominated by Q.
The Kullback-Leibler (KL) divergence D(P||Q) is de-
fined by

P
Z P(z,z')log Tz
z,x’ €
oo, otherwise.

P )
D(P|Q) - <@

The KL divergence is a kind of distance measure
introduced on the space of Markov chains which plays
a fundamental role in stochastic problems concerning
Markov chains. For example, the KL divergence de-
termines the power exponent of the most powerful test
functions of hypothesis testing for Markov chains[10],
[11], or the error exponent of the source coding of
Markov chains[5],[11],[14], etc.

The following is a fundamental property of the KL
divergence.

Lemma 3: (See[10]) For any Markov chains P and @,
D(P||Q) = 0 holds with equality if and only if P = Q.
O

We then have a characterization of the optimal sim-

ulation distribution by the KL divergence.
Theorem 4: The optimal simulation distribution P«
of the IS simulation for o, = FPy(A4,) is the unique
Markov chain P that minimizes D(P||Fy) subject to the
constraint Fp[f] = c. O
Proof. For any P with Ep|[f] = ¢, we see from Lemma 3
and (24),

P(z'|z) P (z'|z)

I3
D(P||Py) = zﬁ;ﬂp(gg,x ) log ) Bola'la) (25)
= D(P||P=)+ Y Pz, ") {t"f(z,2)
z,x’ €0
+logwe (z') — logwe- () —log A=} (26)
= D(P||Pxx) + ct* — log Ay 27
> ct* — log Ag=. (28)

From Lemma 2, P;- satisfies Ep,, [f] = ¢. So, the equal-
ity in (28) holds for P = P;«. The uniqueness of Py« is
guaranteed by Lemma 3. 0
From Theorem 4, we see that P;. is the dominating
point [1],[2] of the set { P € A|Ep[f| = ¢} with respect
to Fy.
Concerning the uniqueness of Fj., we can show

the uniqueness of ¢ that satisfies (15) or %log At =c as
follows;
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Proposition 1: The function log ); is strictly convex for
—o0 < t < oo. O
Proof. See Lemma 3 in[10]. m
The characterization of the optimal simulation dis-
tribution Py by Theorem 4 is more convenient than that
by Theorem 3 from the view point of computation. The
variables of the maximization problem maxp Jp(c) in
Theorem 3 are P(2'|x), on the other hand, the vari-
ables of the minimization problem minp D(P||Fp) in
Theorem 4 are P(z,«'). To give (P(z'|z))y en and to
give (P(x,2'))q,0cq are equivalent, however, the com-
putation based on P(z,z’) is more advantageous than
P(z'|z). In fact, to -compute P(z,z’) from P(z'|z) is
difficult but to compute P(z'|z) from P(z,z') is easy
by using the Eq.(24). Hence, we can say that P(x,2’)
is a more natural coordinate system than P(z/|z) when
we consider stochastic problems concerning Markov
chains. We will investigate in detail in next chapter
the coordinate system of the space of Markov chains.

6. Geometric Properties of the TMC

We will consider the set A = {P} of irreducible Markov
chains on @ = {0,1,---, K} and study the geometric
structure of A. The transition probability matrix of a
Markov chain P = (P(z'|z))z zcq consists of (K + 1)?
elements with K41 constraints ), ., P(2'|z) =1, z €
Q. Since (K +1)2 — (K +1) = K(K +1) elements spec-
ify a Markov chain, A forms a K(K + 1) dimensional
manifold. On the manifold A, two coordinate systems
n and 6 are introduced [1],[9], namely,

n(z,2') = p(z)P(z|z) = Pz, 2'), (29)
n . Pla'|z)P(0]z")
Oz, z") = log W, (30)

z, 2’ €Q, ' £0,

where p = (p(z))zcq is the stationary distribution of
P and P(z,z’) is the joint probability of =z, 2’ € Q.
The n- and 8- coordinate systems are dual to each other
with respect to the Riemannian metric determined by
the Fisher information matrix of Markov chains. The 7
is called the —1 affine coordinate system and # the +1
affine coordinate system. An affine straight line with
respect to the n or 6 coordinate system is called a —1
or +1 geodesic, respectively. A set of the form {P &
Al peq Pz, 2")a(z,2") = b, a(z,2') € R,be R} is
called a Ayperplane in A.

Let us consider a smooth curve P, € A, t € R
with —1 affine coordinate 7; and a smooth curve P, €
A, t € R with +1 affine coordinate (?t The P, and ﬁt
are assumed to intersect at P*, i.e., P, = P;, = P* for

some t1,t> € R. The two curves P; and P, are said to
be orthogonal at P, = P,, = P* if

Z dm(z, z')
dt

z,z' €Q,z' F0

db,(z,z)
dt

=0. 31)

t=11 t=1o
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Let H be a hyperplane in A and P, be a +1
geodesic with 1 affine coordinate 575, t€ R. H and P,
are assumed to intersect at a P* = ]Btz, to € R whose
—1 affine coordinate is n*. H and P, are said to be
orthogonal if for any P € H with —1 affine coordinate
7, the following holds;

Z {n(z, ") =n"(z,2)} & | 0.
z,z’ €Q,z'+0 t=ts
(32)

For reference of the geometric structure of the set
A of Markov chains, see[1],[9].

Now, let Py and P; be irreducible Markov chains
whose +1 affine coordinates are 6y and 6, respectively.
Let P; be the +1 geodesic passing Py and P;. The +1
affine coordinate 8; of P; is given by

O(z, ") = Op(z,2") + t(01(z,2) — Oo(z,2')), (33)
z, ' € Q' +0,t€R.

Note that particularly P; for ¢ = 0 and ¢ = 1 coincide
with the given Py and Py, respectively. The parameter ¢
is called the affine parameter of the geodesic P;.

In the previous sections and this section, we have
used the same notation P; for both the +1 geodesic and
the TMC (9). We will show that they are indeed the
same object. We have
Theorem 5: The TMC P, defined by (9) is the +1
geodesic passing P, whose affine parameter is £. The
optimal simulation distribution P;« is the intersection
of the geodesic P, and the hyperplane H = {P €
A|Ep[f] = c¢}. Furthermore, at the P+, the geodesic
P, and the hyperplane H are orthogonal. O
Proof. Substituting ¢ = 1 into (9), we have

’ _ / Flz,2") wl(ml) /
P (2|z) = Po(z'|x)e Nwn ()’ z,z’ €.

(34)
We will show that F; is the +1 geodesic passing Py and
P;. Let 8, 8y, and 8, denote the +1 affine coordinates

of the Markov chains P;, Py, and P, respectively. Then
from (30), (9), and (34), we have

Py(z'|z) P,(0]z")

0:(z,z') = log B, (0]2) B2 (0]0) (35)
1 PO(93/|93)etf(z’z/)Po(O\a:’)ebf(zlio)
= 10
& Py (0]2) et @0 By (0[0)e 00)
(36)

= 90($7$/) + t(@l(l‘, xl) - 00(.’17,1‘/)), (37)
z, 2’ € Q2 £ 0.

Hence, from (33), the TMC (9) is the +1 geodesic. From
Lemma 2, P;- is lying on the hyperplane H as well as
on the +1 geodesic P, in other words, P;~ is the inter-
section of P, and H. We next show the orthogonality
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of P, and H at P;~. From (37), we have
do !
% =61(z,z') — Op(z,2'), (38)

z,z' € Q,z" £ 0.

Let P be an arbitrary Markov chain lying on the hyper-
plane H. Let n+ and n denote the —1 affine coordinate
of Py« and P, respectively. Then from (38) and (30), we
have by tedious but straightforward computation

db(z, x’
> e - ne (e} 2DEL )
z,2' €Q,240
= Z {P(wil) _Pt*($>$/)}
z,z’ €Q,x$0
x{01(z,z') — bp(z,2')} (40)
= 0. (41)
This completes the proof of Theorem 5. O
7. Example

LetQ = {0,1}, f(0,2")=1/2, f(1,2") =-1/2, 2’ € Q
and consider a Markov chain P, with the following
transition probability matrix [2], p.142;

P q
, 0<p<gq, pt+qg=1. a2
<qp> p<q, pt+aq (42)

In [2], the optimal simulation distribution Fj« is
obtained by numerical computation because the explicit
form of P, represented by p and g is very complicated.

On the other hand, the computation of P, based
on Theorem 4 is simple. The optimal P~ is given by

2z 1+ 2¢c— 2z
1+ 2¢ 1+ 2¢
Pt*: 5 (43)
1+ 2¢c—2z —4c+ 2z
1—2c 1—2¢

where z is the positive solution of the quadratic equa-
tion (2¢—4p?)22+ (4p?(1+2¢) —4gc)z—p? (1 +2¢)* = 0.

Acknowledgment

This work was supported by a research grant from NTT
(Nippon Telegraph and Telephone Corporation).

References

[1] S. Amari, “Differential-Geometrical Methods in Statistics,”
(Lecture Notes in Statistics), Springer-Verlarg, New York,
1985.

[2] J.A. Bucklew, “Large Deviation Techniques in Decision,
Simulation, and Estimation,” Wiley, New York, 1990.

[3] J.A. Bucklew, P. Ney, and J.S. Sadowsky, “Monte Carlo
simulation and large deviations theory for uniformly re-
current Markov chains,” J. Appl. Prob. 27, pp.44—359, 1990.



IEICE TRANS. FUNDAMENTALS, VOL. E79—-A, NO. 9 SEPTEMBER 1996
1428

[4] M. Cottrell, J-C. Fort, and G. Malgouyres, “Large devia-
tions and rare events in the study of stochastic algorithms,”
IEEE Trans. Autom. Control, vol.AC-28, no.9, pp.907—
920, Sept. 1983.

[5] L.D. Davisson, G. Longo, and A. Sgarro, “The error ex-
ponent for the noiseless encoding of finite ergodic Markov
sources,” IEEE Trans. Inf. Theory, vol.27, no4, pp.431—
438, July 1981.

[6] A.Dembo and O. Zeitouni, “Large Deviations Techniques
and Application,” Jones and Bartlett, 1993.

[7] M. Devetsikiotis and J.K. Townsend, “Statistical opti-
mization of dynamic importance sampling parameters
for efficient simulation of communication networks,”
IEEE/ACM Trans. Networking, vol.l, no.3, pp.293-305,
June 1993.

[8] P.M. Hahn and M.C. Jeruchim, “Developments in the the-
ory and application of importance sampling,” IEEE Trans.
Commun., vol.35, no.7, pp.706-714, July 1987.

[9] H. Itoh and S. Amari, “Geometry of information sources,”
Proc. 11th SITA, pp.57-60, 1988.

[10] K. Nakagawa and F. Kanaya, “On the converse theorem
in statistical hypothesis testing for Markov chains,” IEEE
Trans. Inf. Theory, vol.39, no.2, pp.629-633, March 1993.

[11] S. Natarajan, “Large deviations, hypotheses testing, and
source coding for finite Markov chains,” IEEE Trans. Inf.
Theory, vol.31, no.3, pp.360-365, May 1985.

[12] S. Parekh and J. Walrand, “A quick simulation method
for excessive backlogs in the networks of queues,” IEEE
Trans. Autom. Control, vol.34, no.1, pp.54—66, Jan. 1989.

[13] J.S. Sadowsky, “Large deviations theory and efficient sim-
ulation of excessive backlogs in GI/GI/m queues,” IEEE
Trans. Autom. Control, vol.36, no.12, pp.1383-1394, Dec.
1991.

[14] K. Vasek, “On the error exponent for ergodic Markov
chains,” Kybernetika, vol.16, no.4, pp.318-329, 1980.

[15] Q. Wan and V.S. Frost, “Efficient estimation of cell block-
ing probability for ATM systems,” IEEE/ACM Trans. Net-
working, vol.1, no.2, pp.230-235, April 1993.

Kenji Nakagawa received the B.S.,
M.S. and D.S. degrees from Tokyo In-
stitute of Technology in 1980, 1982, and
1985, respectively. In 1985, he joined
NTT (Nippon Telegraph and Telephone
Corp.). Since 1992, he has been an asso-
ciate professor of Dept. of Electrical En-
gineering, Nagaoka University of Tech-
nology. His research interests include in-
formation theory, queueing theory, and
statistics. Dr. Nakagawa is a member of
the JEEE, the SITA, and the Mathematical Society of Japan.




