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The Importance Sampling Simulation of MMPP/D/1

Queueing*

SUMMARY  We investigate an importance sampling (IS) sim-
ulation of MMPP/D/1 queueing to obtain an estimate for the
survivor function P(Q > q) of the queue length Q in the steady
state. In [11], we studied the IS simulation of 2-statt MMPP/D/1
queueing and obtained the optimal simulation distribution, but
the mathematical fundation of the theory was not enough. In this
paper, we construct a discrete time Markov chain model of the
n-state MMPP/D/1 queueing and extend the results of [11] to
the n-statet MMPP/D/1. Based on the Markov chain model, we
determine the optimal IS simulation distribution of the n-state
MMPP/D/1 queueing by applying the large deviations theory,
especially, the sample path large deviations theory. Then, we
carry out IS simulation with the obtained optimal simulation
distribution. Finally, we compare the simulation results of the
IS simulation with the ordinary Monte Carlo (MC) simulation.
We show that, in a typical case, the ratio of the computation time
of the IS simulation to that of the MC simulation is about 107,
and the 95% confidence interval of the IS is slightly improved
compared with the MC.

key words: simulation, queueing, importance sampling, MMPP,
large deviations theory

1. Introduction

The importance sampling (IS) simulation technique has
been exploited to have an accurate estimate for a very
small probability that is not tractable by the ordinary
Monte Carlo (MC) simulation.

In this paper, we investigate a simulation of the
cell loss probability in ATM networks. According to a
service category, the required cell loss probability stan-
dard at a multiplexer is less than 10712, In general, it
is very difficult to obtain such a small probability by
an ordinary MC simulation. Therefore, some kind of
acceleration is necessary for the MC simulation.

The IS method is applied to this ATM queue-
ing problem. We investigate an MMPP/D/1 queueing
model to obtain an estimate for the survivor function
P(Q > q) of the queue length @ in the steady state.
We first represent the MMPP/D/1 by a discrete time
Markov chain model and determine the optimal simu-
lation distribution by applying the large deviations the-
ory, especially, the sample path large deviations theory,
[1],[2]. Next, we carry out IS simulation with the ob-
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tained optimal simulation distribution using the notion
of regenerative cycle and dynamic importance sampling
technique[4],[11]. Finally, we compare simulation re-
sults of the IS simulation with the ordinary MC simu-
lation to confirm the optimality of the obtained simu-
lation distribution. We see that, in a typical case where
the target probability is 107!2, the ratio of the com-
putation time of the 1S simulation to that of the MC
simulation is about 10~7, and the 95% confidence in-
terval of the IS estimate is slightly improved compared
with the MC.

2. Importance Sampling Simulation

The IS technique is widely used for various types of en-
gineering problems, e.g., for estimation of the blocking
probability in queueing system[1],[2],[4],[12]-[14],
the error rate in communications system [ 1], [3],[5], etc.
See [1] for overview of the application of the IS simu-
lation.

In case that the target event (a blocking in queueing
or an error in communications system) is a rare event
with small probability of the order less than 1076, it is
impossible to obtain an estimate by the ordinary MC
method. The MC method requires considerable amount
of computation time. To overcome this difficulty, the
underlying probability distribution is modified to gen-
erate more samples in the target event. Then the samples
obtained by the modified distribution form an unbiased
estimate of the true probability. This estimate is called
an IS estimate. The modified distribution is called a
simulation distribution. If the simulation distribution
is appropriately chosen, the variance of the IS estimate
can be smaller than that of the estimate by the ordinary
MC simulation. The simulation distribution that yields
the IS estimate with the minimum variance is referred
to as the optimal simulation distribution. When we ap-
ply the IS technique to some simulation problems, it is
critical to find the optimal simulation distribution. In
[10], we investigated the IS simulation for the sample
average of output sequences from an irreducible Markov
chain and studied the geometric nature of the optimal
simulation distribution.

The application of the IS technique to the simula-
tion of queueing problems has been studied by many
authors, but the methods of determining the optimal
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IS simulation distribution are heuristic. In [14], the
exhaustive search of some region of the system param-
eters is done to obtain the optimal simulation distri-
bution. In [4], a so-called mean field annealing algo-
rithm is used to find the optimal simulation distribu-
tion. These search algorithms require much computa-
tion time. There are some works[1] which take the-
oretical approach to determine the optimal simulation
distribution, but the treated models are rather simple
ones, as M/M/1.

Our approach of this paper is theoretical. The tar-
get traffic model is an n-state MMPP (Markov modu-
lated Poisson process) which is one of the most impor-
tant traffic models in ATM networks. The MMPP can
represent the bursty nature of cell traffic such as voice or
data. Poisson processes, interrupted Poisson processes
(IPP) are special cases of MMPP. We apply the large
deviations theory, especially the sample path large de-
viations theory, for Markov chains to obtain the optimal
IS simulation distributions.

3. Markov Chain Model of MMPP/D/1

Let us consider an n-state MMPP (Markov modulated
Poisson process). Let Sq,---, S, denote the states of the
MMPP, )\; the mean arrival rate of the Poisson process
at the state S;, ¢ = 1,---,n, and r;; the state transi-
tion probability from state S; to S;, 4,5 = 1,---,n.
We will make a discrete time Markov chain model of
the MMPP/D/1 queueing system. Define the unit time
of the system by the service time for one cell. A time
interval of the unit length is called a time slot. In a
time slot, one of the states Sy,---,S, is assigned and
the state transition can occur at the beginning of a time
slot. The queueing process in a time slot i1s done in the
following order;

1. state transition can occur,
2. the queue length and the state are observed,

(1

3. one cell is served, if any,
4. new cells arrive.

Let Q(t) denote the queue length observed at ¢ th
time slot, and I;(¢t) denote the indicator which shows
that the state S; is the observed state at the ¢ th time
slot, 1.e.,

1, if S; is the state at the ¢ th time slot,
Li(t) = (2)

0, otherwise,

fori=1,---,n.

Now, let A; denote the Poisson random variable of
rate A; that represents the number of arriving cells in a
time slot with state S;. Let T; denote a random vari-
able that represents a transition from the state S, i.e.,
T; is a random variable on the set of states {S7,- -, Sn}
that is defined by P(T; = S;) = rij, 4,5 = 1,---,n.
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Define a 2n-dimensional i.i.d. random vector W by

W = (Ala‘”aAn7T17"'7Tn)‘
Let us consider a random vector

and study its probabilistic law. We investigate the dif-
ference
X(t+1)—X(t)
L(t+1)—IL,(t), t=0,1,---.

For simplicity, write A;Q = Q(¢t + 1) — Q(t), Al; =
L(t+1) - L(t), i=1,---,n. Since I;(t) is the indica-
tor function of the state of the MMPP at the ¢ th time
slot, we can see that the number of arriving cells in the

n
t th time slot is represented by Zli(t)Ai. By the or-
=1
der of the queueing process shown in (1), we have the
fundamental recursion;

n

Q(t+1) = max(0,Q(t) — 1) + Y_ Li(t)A;. (5)

=1

From (5), we have
2:Q=Q(t+1) — Q)
= max(0,Q(t) — 1) + Y _ Li(t)A:i — Q()

=1

Y L(t)Ai -1, for Q(t) >0,
=1

zn:li(t)Ai, for Q(t) =0
=1

(6)
Next, we define a function é;, i = 1,---,n, on the

set of the states {S1,---,S,} by
8;(S;) = 6;; (Kronecker’s delta). @)

If S; is the state at the ¢ th time slot, then the state at the
(t+1)-st time slot is determined by the random variable
T;. Thus, we have

Lt+1) =) L®)&(Ty), i=1,---,n. (8)
i=1

From (8), we have

—bij), i=1,---,n. 9

From (6), (9), we see that A,Q,AJ;, @ = 1,---,n
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are deterministic functions of X(t) = (Q(¢),L(t),
N 7In(t)) and W = (Ala' ) '7An7Tl)' 7Tn)
Write
A(X (1), W) = (8:Q, Atlh, -+, Arly). (10)

A defines a deterministic function from R**! x IR?" to
IR"*! where IR denotes the set of real numbers. Con-

sequently, we have the following recursive formula of
X ()

Xt+D) =Xt +AX@E),W), t=0,1,---. (11)

Since W is an i.i.d. random vector, the random process
X (¢t) forms a Markov chain.

In summary, we have
Theorem 1: Given an initial state X, the random pro-

cess {X(t) = (Q@),I1(t), -, In(t)) }t=0,1,.. forms a
Markov chain with the following recursive formula;
X(0) = Xo, (12)

where A is a deterministic function from R™+! x IR?"»
to IR"*! and represented by

A(X (1), W)
= (AeQ, A¢ly, -+,

AcIL)
(Z Iz(t)Az — l,ilz(t)(él(ﬂ) - 51i)7 T

> L) (6a(T)) — 6,“-)), for Q(t) >0

— i=1

(j{:lxt)

i=1
n

S L) (6a(Ty) - 6,”.)), for Q(t) =

(14)

We here call the {X(t)}:=0,1,... the Markov chain
model of the MMPP/D/1 queueing system.

For simplicity, let X represent the X (¢) at an ar-
bitrary time slot ¢. Denote by P(A(X, W)|X) the con-
ditional probability of the random variable A(X, W)
given X, and Mx(#) the moment generating function
of A(X, W) given X. The Mx () is defined by

Mx()= >
A(X,W)

where 0 = (6y,04, -
parameter and -

Ai, > L()(6:(T) — 61i), -,
i=1

AW PA(X, W)|X),  (15)

,0,) is the (n + 1)-dimensional
represents the scalar product of vec-

i-1 n—i

—— — .
tors. For X = (Q,0,---,0,1,0,---,0), let us consider
A{(X, W) = (AQ,AlL,---,AlL,), where AQ, Al; rep-

resent A;Q,A:;,i = 1,---,n at an arbitrary time ¢,

i—1 n—i

——
respectively. Recall that X = (@,0,---,0,1,0,---,0

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 11 NOVEMBER 1997

means that the queue length is  and the state is S; at
the present time slot. Since AQ represents the difference
of queue lengths between the present and the next time
slots, the number of arriving cells in the present time
slot is

AQ+1, for @ >0, (16)
AQ, for @ =0.
-1 n—i
Further, since0,---,0,1,0,---,0 represents that the state

of the MMPP at the present time slot is .S;, the next state
is determined by T;. The state transition probability ts
written as

i), t=1,---,n. a17)

Z T,‘j(Sj(T
j=1

——
From (16), (17), for X = (@,0,---,0,1,0,---
have

P(A(X,W)|X)
AAQ-Fl N
m - ZTZ] T , fOI'Q>O,
AiQ!e—/\i Zrijéj(ﬂ) for Q = 0.
j=1
(18)

If T; = S;, i.e., if the state is unchanged, then AI; =

0, i = 1,---,n, otherwise, if T; = S;, ¢ ¥ j, then we
have AI, = —1,AI; = +1,Al, = 0,k £ 1,j. Thus, we
have

Mx(0)= Y e"AXMPAX,W)[X)

A(X,W)

_ Z 00AQ 1AL

AQ,AID AT,
¢ AQ+1

A p(A(X,W)|X)

5 yenmoea s A
AQ=-1j=1 AQ+ 1)
for @ > 0,
- 00AQ _0; i 0
Z Ze ° Q o Q!e zrw’
AQ=0 j=1
L for @ = 0.

(19)

We can carry out the calculation of the summation
in (19) with respect to AQ to have

Mx ()
n
_ b0 . 8.
E g~ fotrie A‘rijeef 0’, for Q@ > 0,
_ j=1
- n
E Ase®o— )‘17‘”693'_01', for @ = 0.

<.
Il
—

(20)
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In summary, we have

—— .
Theorem 2: For X = (Q,0,---,0,1,0,---,0),¢ =

1,--,n, the moment generating function Mx(8) of the
random variable A(X, W) given X is
Mx(9)
Ze_o‘)"’)‘ieeo X, ]e , for @ >0,
Z e)"‘eeo_)‘irijeef_ei, for @ =0.
j=1

(21)
4. Optimal Simulation Distribution

In the previous section, we have shown that the
MMPP/D/1 queueing system is represented by a
Markov chain model {X(¢)}¢=o.1,..., which is dominated
by the conditional probability P(A(X,W)|X). In the
IS simulation, the underlying probability distribution
P(A(X,W)|X) is biased to have a simulation distribu-
tion. It is the most important to obtain the simulation
distribution that yields the estimate of the minimum
variance. Such a simulation distribution is called the
optimal simulation distribution. In the following, we
will find the optimal simulation distribution of the IS
simulation for our problem. The following formaliza-
tion is due to [1],[2].

Let us consider the following process X (t;q) for
g=1,2,--+, t=0,1,---;

X(t+1:q) = X(t:9) + gA(X(t;qx w). Q)

1 1 . . 1 1
Form = —t+a-with0 < a < 1,ie, -t <7< 5(t+1),
q

q
we define a new process X,(7) by

X=Xt +a(X(t+19) — X(t;q)), (23)

that is the linear interpolation of X (¢;¢) and X (¢+1; q)
(see [1]). Note that ¢ is a discrete parameter and 7 is
a continuous one. Denote by P, the associated proba-
bility distribution of the process X (1) (see [2]). X,(7)
can be considered as a continuous approximation of the
original process X (t). That the first component Q(t) of
the original process X (t) exceeds ¢ is equivalent to that
the first component of X,(7) exceeds 1.
Now, let us consider another input n-state MMPP
and denote its corresponding queuemg process by
(t) and the random variable by W. Denote by
P(A(X, W)|X) the conditional probability that domi-
nates the process X (t). From X (t), we can construct a
piecewise linear process )?q(T) by the same procedure as
(23) whose associate probability is denoted by ﬁq. For

a sample path )Z'q(r), T 2 0, let C,; be the set of paths
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)?Q(T) whose first component starts at 0 and exceeds |
at some time 79 = 0 before returning to 0. Then, the IS
estimate n;q(C’q) for the survivor function P(Q > q) of
the MMPP/D/1 queueing is obtained as follows. Let
S1,'*,8m be independent sample paths generated by
]Sq. The IS estimate n;q(C’q) is given by

m

5 (Co) ch sJ 55); (24)

where Ic, denotes the indicator function of the set Cj,.
The variance of 15 (Cy) is
q

2
Vaf‘[n;;q (Cq)] :/C (%(3) - E[’?ﬁq (Cq)]> dﬁq(s)'

(25)

We say that the simulation distribution P is the optimal
if P gives the minimum of lim Var[nz (Cy)].
gq—o0 q
A twisted Markov chain Py(A(X,W)|X) is a
Markov chain of the form
O AX,W)

Mx (0)

where P(A(X, W)|X) is the underlying probability dis-
tribution. We search the optimal simulation distribu-
tion P* in the class of twisted Markov chains. In fact,
the following theorem holds.
Theorem 3: (See [2]) Among all the twisted Markov
chains, Py« (A(X,W)|X) with Mx(0*) = 1 gives the
optimal simulation distribution.

From Theorem 3, we know that the optimal simu-
lation distribution Py« is

Pp- (A(X, W)|X) = 28X W P(A(X, W)|X), (27)

where 6* is the solution of the equation Mx(0) = 1.
We need to solve the equation My (8) = 1 to have the
optimal IS simulation distribution. From Theorem 2,
for Q) > 0, the equation Mx(6) =1 is equivalent to

ie Bo+Ase0 - Ypgeh =% i =1,--- n.  (28)

j=1
Define a matrix R = (R;;); j=1,.-.n DY

Ryj = e %tXe®Nip i =1 m, (29)
and a vector z = (z;);=1,....n, DY

zi=ee",i:1,~-~,n. (30)
Then, (28) is written as

Rz =z (31)

From (31), we see that 1 is an eigen value of R, and z is
an eigen vector associated to 1. The matrix R contains
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only 8y among the components of 6, hence the solution
85 is determined by the characteristic equation

det(R— E,) =0, (32)

where E,, denotes the n x n unit matrix. The other com-
ponents 67, - - -, 0% are obtained by the eigen vector z up
to a constant multiple of €%, i =1,.--,n.

Let A},r3;, 4,7 = 1,---,n denote the parameters
of the optimal MMPP. From (18), (27), by assuming
T; = S;, we put

)\*AQ+1
t Mpr = AR 70 DTl oA

fori,7 =1,---,n. By comparing the both sides of (33),
we see that

Ar=Ne®, i=1,-,n, (34)

ri =g TR =1, m, (35)
satisfy (33).

For Q = 0, we can obtain the optimal MMPP in
the same way.

In summary, we have
Theorem 4: For an n-state MMPP with parameters
XiyTijy 6§ = 1,---,n, the optimal 1S simulation distri-
bution of MMPP/D/1 queueing is given by the MMPP
with the following parameters;

A= \e% (36)
o= rijei TMTIT =60 for Q > 0, (37)

K rigei TAHO =60 for Q@ =0,
for i,5 = 1,---,n, where 6* (05,07,---,0%) is the

solution of the equation My (8) = 1 with X = (Q, I,
o In)

10° T T T T 1
10° %—‘w_._ IS estimate
- A —&— MCestimate

10° b > exactformula

PN o.% <

10 15 20 25 30
queue length q

10"
0

Fig. 1 IS and MC estimates for the survivor function P(Q > gq)
of M/D/1 with arrival rates 0.1,0.3,0.5,0.7.
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5. Numerical Results

We carry out IS simulation with the optimal simula-
tion distribution obtained from Theorem 4 using the
notion of regenerative cycle and dynamic importance
sampling technique[4],[11]. We will compare IS esti-
mates of P(Q > ¢) with MC estimates in the following
cases.

(1) M/D/1 with the mean arrival
0.1,0.3,0.5,0.7 (see Fig.1).

rates A =

(2) 2-state MMPP/D/1 with parameters in Table 1 (see
Fig.2).

Table 1 Parameters of the 2-state MMPP’s in Fig. 2.

A1 Az | m2 | a1 A

Casel | 0.3 | 005 ] 0.6 | 0.3 | 0.13

Case2 | 09 | 0.1 0.7 | 0.2 || 0.27

Case3 | 08| 05 | 0.1 | 04 | 0.74
(X denotes the mean arrival rate)

—e— IS estimate
. —2&— MC estimate
|
-3
b I
S v
A 10° ? DR,
G <
a 10-a '\ \ ]
10° Y AN Case 3
0 TN
o ¥ Y
10™ /:\ L \
10‘:°r“~Case 1 Ciase 2
10™ :

0 5 10 15 20 25 30
queue length q

Fig. 2 IS and MC estimates for the survivor function P(Q > q)
of 2-state MMPP/D/1.

0
13_1 W —— IS estimate]
102 ’ —>— MC estimate
107 - %‘ M ’
10"
= 10° %
o _ . A7 i uu?“vg
A 10 NS Y T
C 107 Case 7-
o 10° \ \
10° \\ AN
-10
4 ——
10™ /\ »_Case 6
107 Case 4 %Ca’se 5
10 ‘ ‘

0 5 10 15 20 25 30
queue length q

Fig. 3 IS and MC estimates for the survivor function P(Q > q)
of 3-state MMPP/D/1.
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Table 2 Parameters of the 3-state MMPP’s in Fig. 3.

A | A2 | A3 | ri2 [ m3 | 721 | ro3 | 731 | T32 A

Cased | 0.1 {0204} 04[03]06]| 01|02} 041 02

Case 5|03 [05{04[047]01]|04]02;02]02] 04

Case6 | 08 [ 06 {04 [ 01 04]05|02|01]03] 06

Case7 | 09108 06|04]02]03]02]05]04] 08
(X denotes the mean arrival rate)

Table 3  The length of 95% confidence intervals of 1S and MC simulations.

confidence interval | confidence interval
simulation conditions P(Q>q) IS ordinary MC
M/D/1,A=0.1,9q=7 1.6 x 10~12 3.1x 1013 1.5 x 1012
M/D/1,A=0.7,¢g=39 1.8 x 10712 2.2 x 10713 1.5 x 10712
2-state MMPP/D/1, Case 1, g =10 | 3.3 x 10712 4.2 x 10713 1.5 x 10712
2-statt MMPP/D/1, Case 3, ¢ = 52 | 2.6 x 1012 3.3 x 10713 1.5 x 10—12

Table 4 The comparison of the computation time of IS and
MC in M/D/I.

average of | variance of | computation time
10 samples | 10 samples /sample

IS | 82x107¢ | 1.4 x 10~2 0.01[sec]

MC | 79 x10-° | 1.5 x10~? 67.7[sec]

(3) 3-state MMPP/D/1 with parameters in Table 2 (see
Fig. 3).

We see from Figs. 1-3 that by the ordinary MC
simulation we can obtain estimates of P(Q > ¢) only
up to about 10~¢. Meanwhile, by the IS simulation we
can get stable estimates of all values of P(Q > ¢). Ac-
cording to our extensive results, we could have values
of P(Q > q) ~ 10729,

In the range around P(Q > q) ~ 10~!2 of M/D/I,
the number of time slots in an IS simulation run is 106.
Since the MC method cannot yield an estimate of a
probability 1072, we assume that it takes about 10'3
time slots in a MC simulation run. Thus, the ratio of
the computation time of the IS simulation to that of the
MC simulation is about 10~7. We show in Table 3 the
95% confidence intervals of IS and MC estimates. For
MC, we assume conservative values [6] of the confidence
intervals in Table 3. We can see that the IS method can
reduce the simulation time by improving slightly the
95% confidence intervals of the estimates.

We finally show the comparison of the computa-
tion time between IS and MC methods in the case of
M/D/1, such that the mean arrival rate A = 0.5, ¢ =9,
hence the exact value of P(Q > 9) = 8.1 x 107%..1n one
simulation run, IS consumed about 10° time slots and
MC 107 time slots. We repeated IS and MC simulation
runs 10 times, respectively, and then obtained sample
averages and sample variances for P(Q > 9). The ob-
tained sample averages by IS and MC are almost the
same, so this is a fair comparison. We have Table 4.

The ratio of the number of consumed time slots of
MC to that of IS is about 10%, but the ratio of the com-
putation time is about 67.7/0.01 = 6.77x 103, that is less
than 10%. This is because the IS method requires some

additional computational overhead to the MC method.
6. Conclusion

We investigated an importance sampling (IS) simula-
tion for the survivor function P(Q > ¢) of an n-state
MMPP/D/1 queueing systems.

We provided a discrete time Markov chain model of
MMPP/D/1 and represented it by a recursive formula.
Based on the Markov chain model, we determined the
optimal IS simulation distribution by using large de-
viations theory. Our approach is theoretical, therefore
there is no need to do an exhaustive search of the pa-
rameter space.

Next, we carried out the IS and Monte Carlo
(MC) simulations to compare estimates of P(Q > q)
in the cases of M/D/1, 2-state MMPP/D/1, and 3-
state MMPP/D/1. We confirmed that the IS method
has made the computation time much smaller than the
MC method, and the 95% confidence interval slightly
improved.
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