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On the Optimal Markov Chain of IS Simulation

Kenji Nakagawa, Member, IEEE

Abstract—We investigate the importance sampling (IS) simulation for
the sample average of an output sequence from an irreducible Markov
chain. The optimal Markov chain used in simulation is known to be a
twisted Markov chain, however, the proofs in [2], [3] are very complicated
and do not give us a good perspective. We give a simple and natural
proof for the optimality of the simulation Markov chain in terms of the
Kullback–Leibler (KL) divergence of Markov chains. The performance
degradation of the IS simulation by using a not optimal simulation Markov
chain, i.e., the difference between the obtained variance and the minimum
variance is shown to be represented by the KL divergence. Moreover, we
show a geometric relationship between a simulation Markov chain and
the optimal one.

Index Terms—Importance sampling simulation, information geometry,
Kullback–Leibler (KL) divergence, Markov chain.

I. INTRODUCTION

The importance sampling (IS) simulation technique has been used
to obtain quickly an accurate estimate for a very small probability that
is not tractable by the ordinary Monte Carlo (MC) simulation. The IS
technique is widely used for various types of engineering problems,
e.g., the estimation of a blocking probability in queuing system [2],
[4], [7], an error rate in communications system [2], [6], etc. See [2]
for an overview of the application of IS simulation.

If the target event (blocking in queuing systems, or error in commu-
nications systems) is a rare event with small probability of less than
about10�6, it is impossible to obtain an estimate by the ordinary MC
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simulation because of the limit of simulation time and the precision
limit of pseudo-random numbers. To overcome these difficulties, a dif-
ferent probability distribution from the underlying probability distri-
bution is used for simulation in order to generate more samples in the
target event. Then the obtained value is modified by the likelihood ratio
to obtain an unbiased estimate. This estimate is called an IS estimate.
The probability distribution used for simulation is called a simulation
distribution. If the simulation distribution is appropriately chosen, the
variance of the IS estimate can be smaller than that of the MC estimate.
The simulation distribution that yields the IS estimate of the minimum
variance is referred to as the optimal simulation distribution. When we
apply the IS technique to some simulation problem, it is critical to find
the optimal simulation distribution.

In the case of a Markov chain, the Markov chain which is used in the
IS simulation is called a simulation Markov chain, and the optimal one
is called the optimal simulation Markov chain. It has been known [2],
[3] that the optimal simulation Markov chain is unique and belongs to
the class of twisted Markov chains (TMC), but the proofs in [2], [3] are
complicated and do not give a good perspective. In [2], the perturbation
technique is used to prove that the optimal simulation Markov chain is
a TMC. In [3], Jensen’s inequality is used in the proof and the line of
argument is elementary but complicated. Both of the proofs in [2] and
[3] are lengthy.

In [10], we studied geometric properties of IS simulation and showed
that the Kullback–Leibler (KL) divergence of Markov chains plays an
important role in this problem. In this correspondence, we give a geo-
metric view to this problem and provide a simple and natural proof
for the optimality of a simulation Markov chain in terms of KL diver-
gence. The performance degradation of the IS simulation by using a not
optimal simulation Markov chain, i.e., the difference between the ob-
tained variance and the minimum variance is shown to be represented
by the KL divergence. Moreover, we show a geometric relationship be-
tween a simulation Markov chain and the optimal one.

II. I MPORTANCESAMPLING SIMULATION FOR MARKOV CHAINS

We investigate a simulation for the sample average of an output se-
quence from an irreducible finite-state Markov chain.

Let P0 denote an irreducible Markov chain on the state space
 �
f0; 1; . . . ; Kg; K > 0. The state transition probability matrix ofP0
is denoted byP0 = (P0(x

0jx))x; x 2
, and the initial distribution is
given by the stationary distributionp0 = (p0(x))x2
 of P0. The joint
probability ofx; x0 2 
 is denoted byP0(x; x0) � p0(x)P0(x

0jx).
Consider a mappingf : 
 � 
 ! Z, whereZ denotes the set of
integers. Denote byEP [f ] the expectation off with respect toP0

EP [f ] �
x; x 2


P0(x; x
0)f(x; x0): (1)

AssumeEP [f ] = 0 without loss of generality.
Letxxxn = (x1; x2; . . . ; xn) 2 
n be a sample sequence generated

by the Markov chainP0. We consider the probability of the following
setAn:

An = xxx
n 2 
n 1

n� 1

n�1

i=1

f(xi; xi+1) > c ; c > 0: (2)

Write

�n � P0(An) =
xxx 2A

P0(xxx
n)

where

P0(xxx
n) = p0(x1)P0(x2jx1) . . .P0(xnjxn�1):
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We see from large deviations theory [2], [6], that the asymptotic be-
havior of the�n is given as follows. LetR denote the set of real num-
bers. Fort 2 R, denote by�t the largest eigenvalue of a matrix

P0(x
0jx)etf(x; x )

x; x 2

: (3)

From the Perron–Frobenius theorem [2], we can see that�t is a positive
eigenvalue with multiplicity1. For y 2 R, the rate functionI(y) is
defined by

I(y) = sup
t2R

(yt� log �t): (4)

The rate of the exponential decay of�n is represented by the rate func-
tion.

Theorem 1 (Large Deviations Theorem [2]):We have

lim
n!1

�
1

n
log �n = I(c) (5)

wherec is the value in (2).

We know the asymptotic behavior of�n by this theorem, however,
it is often necessary to have an accurate value of�n for some finiten.
So, we need to use a stochastic simulation, but if�n is very small, it is
not tractable by the ordinary MC simulation. We apply the IS technique
to the simulation of�n.

Consider the IS simulation with a simulation Markov chainQ. Let
Xn = (X1; . . . ; Xn), n = 1; 2; . . ., be a random sequence gener-
ated byQ, andxxxn1 ; . . . ; xxx

n
k 2 
n be k independent realizations of

Xn. The IS estimate�n(Q) for �n with a simulation Markov chainQ
is given by

�n(Q) =
1

k

k

j=1

1A (xxx
n
j )

P0(xxx
n
j )

Q(xxxnj )
(6)

where1A is the indicator function of the setAn.

III. T HE OPTIMAL SIMULATION MARKOV CHAIN

It is readily seen that the IS estimate (6) is unbiased [2]. Among the
IS estimates, we would like to have the Markov chainQ that minimizes
the varianceV [�n(Q)] of �n(Q). A simulation Markov chainQ is
assumed to be of the same type of irreducible Markov chain as the
underlying Markov chainP0.

A. Twisted Markov Chain andQ-Twisted Markov Chain

For the underlying Markov chainP0, we define a TMCPt; t 2R.
Recalling that�t is the largest eigenvalue of the matrix (3), let us denote
by wt = (wt(x))x2
 a right eigenvector associated with�t. Then, a
TMC Pt is defined by

Pt(x
0jx) = P0(x

0jx)etf(x; x ) wt(x
0)

�twt(x)
; x; x

02
; t2R: (7)

From the definition of�t andwt, one can readily see that

x 2


Pt(x
0jx) = 1; x 2 


holds.
Next, we define another type of TMC which plays an important role

when we evaluate the variance of an IS estimate. Consider the IS sim-
ulation with simulation Markov chainQ. Fors 2 R, denote by�Q; s
the largest eigenvalue of a matrix

P0(x
0jx)2

Q(x0jx)
e
sf(x; x )

x; x 2


(8)

andvQ; s = (vQ;s(x))x2
 its associated right eigenvector. A TMC
PQ; s concerned with the simulation Markov chainQ, which we call a
Q-TMC for short, is defined by

PQ; s(x
0jx) =

P0(x
0jx)2

Q(x0jx)
e
sf(x; x ) vQ;s(x

0)

�Q; svQ;s(x)
; x; x

0 2 
:

(9)

We can see

x 2


PQ; s(x
0jx) = 1; x 2 
:

We next define

JQ(y) = sup
s2R

(ys� log �Q; s); y 2 R: (10)

Then the following theorem holds.

Theorem 2 (see [2]):For the varianceV [�n(Q)] of �n(Q) by a
simulation Markov chainQ, we have

lim
n!1

�
1

n
log V [�n(Q)] = JQ(c) (11)

wherec is the value in (2).

The optimal simulation Markov chain is defined to be the Markov
chainQ that maximizes theJQ(c).

B. Lemmas for TMC andQ-TMC

For preparation, we give some lemmas.
Let wt = (wt(x))x2
 denote a left eigenvector of the matrix (3)

associated with�t, and recall thatwt = (wt(x))x2
 is a right eigen-
vector. Thewt is assumed to be normalized as

x2


wt(x)wt(x) = 1:

Similarly, let vQ; s = (vQ; s(x))x2
 denote a left eigenvector of the
matrix (8) associated with�Q; s which is normalized as

x2


vQ; s(x)vQ; s(x) = 1:

Lemma 1: The stationary distributionpt = (pt(x))x2
 of a TMC
Pt is given by

pt(x) = wt(x)wt(x); x 2 
:

Furthermore, the stationary distributionpQ; s = (pQ;s(x))x2
 of a
Q-TMC PQ; s is given by

pQ;s(x) = vQ; s(x)vQ; s(x); x 2 
:

Proof: ForPt, see [10, Lemma 1]. Here we give a proof forPQ; s.
By the definition ofvQ; s andvQ;s, we have

x2


PQ; s(x
0jx)vQ;s(x)vQ; s(x) (12)

=
x2


P0(x
0jx)2

Q(x0jx)
e
sf(x; x )

�
�1
Q; svQ;s(x

0)vQ; s(x) (13)

= vQ; s(x
0)vQ; s(x

0); x
0 2 
: (14)

Lemma 2: For t = t� that attains

sup
t2R

(ct� log �t)

we haveEP [f ] = c. Furthermore, fors = s�(Q) that attains

sup
s2R

(cs� log �Q; s)

we haveEP [f ] = c.
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Proof: ForPt, see [10, Lemma 2]. Here we give a proof forPQ; s.
First, we have

d

ds
(cs� log �Q; s)

s=s (Q)

= c� �
�1

Q; s

d�Q;s

ds
s=s (Q)

=0: (15)

SincevQ;s is a right eigenvector associated with�Q; s, we have

x 2


P0(x
0jx)2

Q(x0jx)
e
sf(x; x )

vQ;s(x
0) = �Q; svQ;s(x); x 2 
:

(16)

By differentiating the both sides of (16) with respect tos, multiplying
by vQ; s(x), and taking summation with respect tox 2 
, we have
from Lemma 1

�Q; s
x; x 2


PQ; s(x; x
0)f(x; x0) =

d�Q;s

ds
: (17)

Substituting s = s�(Q) into (17), we see from (15) that
EP [f ] = c holds.

Lemma 3: For a TMCPt, we have the following:

i) �P ; s = �t�s�t,

ii) vP ; s(x) = wt(x)ws�t(x); x 2 
,

iii) PP ; s = Ps�t.

Proof: We can confirm by a straightforward computation that
�t�s�t is an eigenvalue of the matrix

P0(x
0jx)2

Pt(x0jx)
e
sf(x; x )

x; x 2


(18)

and wt(x)ws�t(x) is its associated left eigenvector. iii) is easily
checked by i) and ii).

For two Markov chains

P = (P (x0jx))x; x 2


and

Q = (Q(x0jx))x;x 2


we define the KL divergenceD(PkQ). Letp = (p(x))x2
 denote the
stationary distribution ofP andP (x; x0) � p(x)P (x0jx) denote the
joint probability ofx; x0 2 
. Note that

x 2


P (x; x0) =
x 2


P (x0; x) = p(x); x 2 
: (19)

If P (x0jx) = 0 holds for anyx; x0 2 
 with Q(x0jx) = 0, we
write P � Q and say thatP is dominated byQ. The KL divergence
D(PkQ) is defined by

D(PkQ) = x; x 2


P (x; x0) log P (x jx)
Q(x jx)

; P � Q

1; otherwise.

(20)

The KL divergence is a kind of distance measure introduced on the
space of Markov chains which plays a fundamental role in stochastic
problems concerning Markov chains. For example, the KL divergence
determines the power exponent of the most powerful test function of
hypothesis testing for Markov chains [9], [11], or the error exponent of
the source coding of Markov chains [5], [11], etc.

The following is a fundamental property of the KL divergence.

Lemma 4 (see [9]):For any Markov chainsP andQ, we have
D(PkQ) � 0. The equality holds if and only ifP = Q.

Next, we characterize the rate functionI(c) by the KL divergence.

Lemma 5 (see [10, Theorem 4]):For t = t� that attains

sup
t2R

(ct� log �t)

we have

I(c) = D(Pt kP0) = inf
P : E [f]=c

D(PkP0) (21)

i.e.,Pt is the dominating point [2] of the setfP jEP [f ] = cg with
respect toP0.

Proof: For anyP with EP [f ]=c, we see from (7) and Lemma 4

D(PkP0) =
x; x 2


P (x; x0) log
P (x0jx)

Pt (x0jx)

Pt (x0jx)

P0(x0jx)
(22)

=D(PkPt ) + ct
�� log �t (23)

� I(c): (24)

The equality holds if and only ifP = Pt .

We can now give a new proof for the following theorem with the KL
divergence.

Theorem 3: For an arbitrary simulation Markov chainQ, we have

JQ(c) � 2I(c): (25)

The equality holds if and only ifQ = Pt .

Proof: From (9), we have

log
PQ; s(x

0jx)

P0(x0jx)
= log

P0(x
0jx)

Q(x0jx)
+ sf(x; x0) + log vQ; s(x

0)

� log vQ; s(x)� log �Q; s: (26)

Multiplying both sides of (26) byPt (x; x0) and taking summation
with x; x0 2 
, we have, from Lemma 2 and (19)

x; x 2


Pt (x; x0) log
PQ; s(x

0jx)

P0(x0jx)

=
x; x 2


Pt (x; x0) log
P0(x

0jx)

Q(x0jx)
+ sc� log �Q; s: (27)

Hence, from (27) and Lemma 5

sc� log �Q; s =2D(Pt kP0)�D(Pt kQ)�D(Pt kPQ; s)

= 2I(c)�D(Pt kQ)�D(Pt kPQ; s): (28)

From (28) and Lemma 4, we have

JQ(c) � 2I(c): (29)

The equality in (29) holds only ifQ=Pt . If Q=Pt , from Lemma 3

inf
s2R

D(Pt kPQ; s) = inf
s2R

D(Pt kPs�t ) (30)

=0 (by puttings = 2t�): (31)

This completes the proof.

Corollary 1: The degradation of the variance by using a not neces-
sarily optimal simulation Markov chainQ, i.e., the difference2I(c)�
JQ(c) is represented by the KL divergence

2I(c)� JQ(c) = D(Pt kQ) + inf
s2R

D(Pt kPQ; s): (32)
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IV. GEOMETRIC RELATION OF P0 AND Q

Let us consider the set� of irreducible Markov chains on the state
space
 = f0; 1; . . . ; Kg. On the set�, two mutually dual coordi-
nate systems� and� are introduced [1], [8], [10], namely

�(x; x0) = p(x)P (x0jx) � P (x; x0); x; x
0 2 
; x0 6= 0 (33)

�(x; x0) = log
P (x0jx)P (0jx0)

P (0jx)P (0j0)
; x; x

0 2 
; x0 6= 0 (34)

wherep = (p(x))x2
 is the stationary distribution ofP andP (x; x0)
is the joint probability ofx; x0 2 
.

Differential geometric structures are defined on� and statistical
quantities are represented in terms of geometric quantities, see [1], [8]
for a reference of geometry on�.

A straight line in the� coordinate is called ageodesic, which is in-
deed a geodesic defined by an affine connection introduced on� [1].
A subsetH of � of the form

H = fP 2 �j
x; x 2


P (x; x0)a(x; x0) = b; a(x; x0) 2 R; b 2 Rg

is called ahyperplane.For a geodesicl and a hyperplaneH , we say
thatl intersects orthogonally toH at P � if P � 2 l \H and

x; x 2
; x 6=0

d�P (t)(x; x
0)

dt
(�Q (x; x0)� �Q (x; x0)) = 0 (35)

hold for anyP (t) 2 lwith the� coordinate�P (t) and anyQ1; Q2 2 H

with � coordinates�Q ; �Q .
Then we have the following lemma.

Lemma 6 (Pythagoras, [1], [8]):Let l be a geodesic that intersects
orthogonally to a hyperplaneH atP �. Then for anyP 2 l andQ 2 H ,
we have

D(QkP ) = D(QkP�) +D(P �kQ): (36)

We will show some geometric properties of the IS simulation. First,
we notice that the set ofP which satisfiesEP [f ] = c forms a hyper-
plane. Let us denote it byHf � fP 2 �jEP [f ] = cg. Then we have
the following theorem.

Theorem 4: The TMCPt is a geodesic and it intersects orthogo-
nally to the hyperplaneHf at Pt . Furthermore, theQ-TMC PQ; s

is a geodesic and it intersects orthogonally to the hyperplaneHf at
PQ; s (Q).

Proof: For Pt, see [10, Theorem 5]. Here we give a proof for
PQ; s. Let�Q;s denote the� coordinate ofPQ; s. Then by the definition
(34) of � coordinate, it is easy to see that

�Q;s(x; x
0) = �Q; 0(x; x

0) + s(�Q;1(x; x
0)� �Q; 0(x; x

0));

x; x
0 2 
; x0 6= 0: (37)

From (37), we see that�Q;s is a straight line in the� coordinate, hence
PQ; s is a geodesic. For anyPQ; s with � coordinate�Q;s and for any
Q1; Q2 2 Hf with � coordinates�Q ; �Q , we have from (33), (34),
and (37) that

x; x 2
; x 6=0

d�Q;s(x; x
0)

ds
(�Q (x; x0)� �Q (x; x0)) = 0: (38)

Thus, from Lemma 2, we see that the geodesicPQ; s intersects orthog-
onally to the hyperplaneHf atPQ; s (Q).

Corollary 2: The infimum in (32) is attained bys = s�(Q). Thus,
we have

2I(c)� JQ(c) = D(Pt kQ) +D(Pt kPQ; s (Q)): (39)

Fig. 1. Geometric relation ofP ; Q; P ; P in the� coordinate.

(See Lemma 2 for the definition ofs�(Q).)

Proof: By Lemmas 2, 6, and Theorem 4, for anys 2 R we have

D(Pt kPQ; s) =D(Pt kPQ; s (Q)) +D(PQ;s (Q)kPQ; s) (40)

�D(Pt kPQ; s (Q)): (41)

The equality in (41) holds if and only ifs = s�(Q).
Theorem 5: For the underlying Markov chainP0 and a simulation

Markov chainQ ands 2 R, denote by�0; �s; �Q; �Q; s the� coordi-
nates ofP0; Ps; Q; PQ; s, respectively. Then we have a relation

�Q;s = �0 + �s � �Q (42)

which can be depicted in Fig. 1.

Proof: (42) is easily checked by the definition (34) of the�
coordinate.

From Fig. 1, we can see by geometric consideration that the optimal
simulation Markov chainQ isQ = Pt ands = 2t�.

V. CONCLUSION

We investigated the IS simulation for the sample average of an output
sequence from an irreducible Markov chain. We provided a new proof
for the optimality of a simulation Markov chain by means of the KL
divergence of Markov chains. Furthermore, we gave a geometric view
to the relation of the underlying Markov chain and a simulation Markov
chain.

In a more complicated simulation problem, usually the optimal sim-
ulation distribution is searched only from among the twisted distribu-
tions. This is because the set of twisted distributions is one-dimensional
and the optimization is easy. The introduction of the geometric view to
the IS simulation can yield a simple proof for the proposition that the
optimal simulation distribution among a wider class is necessarily a
twisted distribution.
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Quasi-Convexity and Optimal Binary Fusion for
Distributed Detection with Identical Sensors in Generalized

Gaussian Noise

Wei Shi, Member, IEEE, Thomas W. Sun, Student Member, IEEE, and
Richard D. Wesel, Member, IEEE

Abstract—In this correspondence, we present a technique to find the
optimal threshold for the binary hypothesis detection problem with
identical and independent sensors. The sensors all use an identical and
single threshold to make local decisions, and the fusion center makes
a global decision based on the local binary decisions. For generalized
Gaussian noises and some non-Gaussian noise distributions, we show that
for any admissible fusion rule, the probability of error is a quasi-convex
function of threshold . Hence, the problem decomposes into a series of
quasi-convex optimization problems that may be solved using well-known
techniques.

Assuming equala priori probability, we give a sufficient condition of the
non-Gaussian noise distribution ( ) for the probability of error to be
quasi-convex. Furthermore, this technique is extended to Bayes risk and
Neyman–Pearson criteria. We also demonstrate that, in practice, it takes
fewer than twice as many binary sensors to give the performance of infinite
precision sensors in our scenario.

Index Terms—Distributed detection, fusion rule, generalized Gaussian
noise, hard decision, non-Gaussian noise.

I. INTRODUCTION

Consider distributed detection ofs 2 f�m; mg, where theith ofn
local sensors observesxi = s + zi with independent and identically
distributed (i.i.d.) noisezi. Theith sensor comparesxi to a threshold
� to compute a binary decisionui as

ui =
0; whenxi < �

1; whenxi � � .
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Each binary decisionui is transmitted to a fusion center, which ap-
plies a fusion ruleF to k = n

i=1
ui to produce the final decision

F (k). The case withn = 2 and Gaussian noise is considered as an
example in [1]. This correspondence extends this specific case to the
general case with any number of sensorsn for the family of general-
ized Gaussian noise and describes a technique for identifying the pair
(�; F ) that minimizes the probability of error. For equala priori prob-
abilities, a sufficient condition of the non-Gaussian noise distribution
g(x) for the probability of error to be quasi-convex is given and some
non-Gaussian noise distributions which satisfy this condition are listed.
This technique extends to Bayes risk and Neyman–Pearson criterion.

The identical threshold� in local sensors generally does not result
in an optimum system. However, the identical threshold assumption
reduces the complexity dramatically. For binary hypothesis detection,
Irving and Tsitsiklis [2] showed that no optimality is lost with identical
local detectors in a two-sensor system. Tsitsiklis [3] as well as Chen
and Papamarcou [4] showed that identical local detectors are asymptot-
ically optimum when the number of sensorsn tends to infinity. These
results provide some justification for restricting attention to identical
quantizers.

Even with identical local thresholds, the problem is still complicated
by the existence of multiple local minima. Furthermore, minimizing
probability of error is difficult because the Bayesian error probability
is not a smooth function, i.e., its first derivative is a discontinuous func-
tion. Hashlamoun and Varshney [1], [5] have overcome this difficulty
by using a smooth bound on the Bayesian error probability to approx-
imately determine the optimal pair(�; F ). Avi-Itzhak and Diep [6]
provided an even tighter bound leading to a very good approximation.
Even so, these techniques still produce a minimization problem that
may have local minima, since neither convexity nor quasi-convexity
was shown in these references.

In this correspondence, we show that for any admissible fusion rule
Fi (i.e., anyFi that is optimal for at least one� ),Pe(�; i) defined as the
probability of error for(�; Fi) is a quasi-convex function of� . Quasi-
convexity [7] means that every sublevel setS� = f� : Pe(�; i) � �g
is convex. The admissible functionsFi are simply threshold tests of the
form

s = Fi(k) =
�m; if k < i

m; if k � i.
(1)

Hence, the problem decomposes into a series ofn quasi-convex opti-
mization problems (one for eachFi) that may be solved exactly using
a variety of techniques including, for example, the ellipsoid algorithm
[8].

Section II shows the proof of the quasi-convexity of the probability
of error versus� for every admissible fusion ruleFi with general-
ized Gaussian noise. In Section III, with equala priori probability,
a sufficient condition of the non-Gaussian noise distributiong(x) for
the probability of error to be quasi-convex is given and some non-
Gaussian noise distributions that satisfy this condition are listed. Sec-
tion IV shows some illustrative examples. Section V extends this tech-
nique to Bayes risk and Neyman-Pearson criterion. Section VI con-
cludes this correspondence.

II. GENERALIZED GAUSSIAN NOISE

A. Admissible Fusion Rules

This section identifies the admissible fusion rules for generalized
Gaussian noise and shows that the probability of error versus� is quasi-
convex for these rules.
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