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[21] L. Gurvits, “Stability of discrete linear inclusionl’inear Algebra Ap- simulation because of the limit of simulation time and the precision
plications vol. 231, pp. 47-85, 1995. _ , , _ limit of pseudo-random numbers. To overcome these difficulties, a dif-
[22] {\(‘)'m Ea't?ggﬁggoéor'&ﬁﬁﬂgmgé'fg;‘irls;;f’ g'esg_relthg_c'us'ons'A”' ferent probability distribution from the underlying probability distri-
[23] J. N. Tsitsiklis and V. D. Blondel, “The Lyapunov exponent and joinputlon is used for simulation in order to generate more samples in the
spectral radius of pairs of matrices are hard—when not impossible—t@rget event. Then the obtained value is modified by the likelihood ratio
compute and to approximatéVath. Control, Signals, Systol. 10, pp.  to obtain an unbiased estimate. This estimate is called an IS estimate.
31-40, 1997. o - The probability distribution used for simulation is called a simulation
[24] \rga?r'iXB;%r;?izlrgSSS‘]i's':'Jhgzgisélggslé’,?grlg;?ﬁinf:ﬁ_ iggg_tely gener"j‘te%list_ribution. If the sin_1u|ation distribution is appropriately chosenf the
[25] M. Maesumi, “An efficient lower bound for the generalized spectral ravariance of the IS estimate can be smaller than that of the MC estimate.
dius of a set of matricesinear Algebra Applicationsvol. 240, pp. The simulation distribution that yields the IS estimate of the minimum
1-7, 1996. _ o variance is referred to as the optimal simulation distribution. When we
[26] ;eg'o Sc?ﬁcﬂrﬁ'ﬁ%'é‘i Og;etzsﬁfz'gat”ces' #moc. SPIEvol. 2303, San - 5501y the IS technique to some simulation problem, itis critical to find
[27] D. Colella and C. Heil, “The characterization of continuous, four-coeffith€ optimal simulation distribution.
cient scaling functions and wavelet$£EE Trans. Inform. Theorywol. In the case of a Markov chain, the Markov chain which is used in the
38, pp. 876-881, Mar. 1992. IS simulation is called a simulation Markov chain, and the optimal one
(28] G. (‘T_ripenberg,l“%21putinfstf%%joligg(sspectral radiusifiear Algebra. s called the optimal simulation Markov chain. It has been known [2],
[29] g??_;ﬁgngr?csj\g). .Marc’ups‘j&n Introt’JIuctioﬁ to Symbolic Dynamics and (3] that the opt.imal simulation Markov chain is unique aqd belongs to
Coding New York: Cambridge Univ. Press, 1995. the class of twisted Markov chains (TMC), but the proofs in [2], [3] are
[30] R. Karabed and P. H. Siegel, “Matched spectral-null codes for partiatomplicated and do not give a good perspective. In [2], the perturbation
response channeldEEE Trans. Inform. Theoryol. 37, pp. 818-855, technique is used to prove that the optimal simulation Markov chain is
May 1991. a TMC. In [3], Jensen’s inequality is used in the proof and the line of
argument is elementary but complicated. Both of the proofs in [2] and
[3] are lengthy.

In [10], we studied geometric properties of IS simulation and showed
that the Kullback—Leibler (KL) divergence of Markov chains plays an
important role in this problem. In this correspondence, we give a geo-
metric view to this problem and provide a simple and natural proof
for the optimality of a simulation Markov chain in terms of KL diver-
gence. The performance degradation of the IS simulation by using a not
optimal simulation Markov chain, i.e., the difference between the ob-

Abstract—We investigate the importance sampling (IS) simulation for ~tained variance and the minimum variance is shown to be represented
the sample average of an output sequence from an irreducible Markov by the KL divergence. Moreover, we show a geometric relationship be-

chain. The optimal Markov chain used in simulation is known to be a  tween a simulation Markov chain and the optimal one.
twisted Markov chain, however, the proofs in [2], [3] are very complicated

and do not give us a good perspective. We give a simple and natural
proof for the optimality of the simulation Markov chain in terms of the Il. IMPORTANCE SAMPLING SIMULATION FOR MARKOV CHAINS

Kullback-Leibler (KL) divergence of Markov chains. The performance We i tigat imulation for th | f tout
degradation of the IS simulation by using a not optimal simulation Markov € Investigate a simulation for the sample average or an output se-

chain, i.e., the difference between the obtained variance and the minimum guence from an irreducible finite-state Markov chain.
variance is shown to be represented by the KL divergence. Moreover, we  Let Py denote an irreducible Markov chain on the state sgace

show a geometric relationship between a simulation Markov chain and {0. 1, ..., K}, K > 0. The state transition probability matrix &%
the optimal one. is denoted byPs = (Po(z'|x))s. »7cq. and the initial distribution is
Index Terms—mportance sampling simulation, information geometry, given by the stationary distributign, = (po(«)).co of Fy. The joint
Kullback-Leibler (KL) divergence, Markov chain. probability ofz, 2’ € €2 is denoted byPy (x, 2') = po(z)Po(a’|2).
Consider a mapping: Q2 x 2 — Z, whereZ denotes the set of
integers. Denote by p,[f] the expectation of with respect ta%

On the Optimal Markov Chain of IS Simulation

Kenji NakagawaMember, IEEE

|. INTRODUCTION

The importance sampling (IS) simulation technique has been used Erlfl = Z Po(a, ') f(x, a'). )
to obtain quickly an accurate estimate for a very small probability that @, 2/ €Q
is not tractable by the ordinary Monte Carlo (MC) simulation. The 18ssumeEr,[f] = 0 without loss of generality.
technique is widely used for various types of engineering problems,Letz” = (x1, 2, ..., x,) € " be a sample sequence generated
e.g., the estimation of a blocking probability in queuing system [2py the Markov chain’% . We consider the probability of the following
[4], [7], an error rate in communications system [2], [6], etc. See [Zet4.:
for an overview of the application of IS simulation. {
z" e Q"

n—I1

%Zf(l‘nmmw}v c>0. (2
=1

If the target event (blocking in queuing systems, or error in commud, =
nications systems) is a rare event with small probability of less than
about10~°, it is impossible to obtain an estimate by the ordinary MQVrite

an = PRy(4,) = Y R(a")
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We see from large deviations theory [2], [6], that the asymptotic bandvg,. = (vg,s(x))zeq its associated right eigenvector. A TMC
havior of thew.,, is given as follows. LeR denote the set of real num- P, s concerned with the simulation Markov chaih which we call a

bers. Fort € R, denote by\, the largest eigenvalue of a matrix @-TMC for short, is defined by
’ ., !
PO(ZE/M)S[‘[(IJ : : @) Py (' |z ( lo)® G M, z, 2’ € Q.
( )r,r’EQ Q, ( | ) Q(l'|r) (Q,SUQ‘S(JJ) |
From the Perron—Frobenius theorem [2], we can see\thiata positive (C)]
eigenvalue with multiplicityl. Fory € R, therate functionI(y) is We can see
defined by

Y Pos@fe)=1z€Q

I(y) = sup(yt — log Aq). (4) £
teR x’eQ

The rate of the exponential decaycof is represented by the rate func- We next define
tion. Jo(y) = sup(ys —log Co,5),  y € R. (10)
SER

Theorem 1 (Large Dewan;)ns Theorem [2]We have Then the following theorem holds.
lim 0 log an = I(c) ®) Theorem 2 (see [2]):For the variancd’[&, (Q)] of @, (Q) by a

wherec is the value in (2). 0 simulation Markov chairf), we have

1 .

We know the asymptotic behavior of, by this theorem, however, Jim = log Vian (@) = Jo(e) (11)
it is often necessary to have an accurate value,ofor some finiten.
So, we need to use a stochastic simulation, but,ifs very small, it is
not tractable by the ordinary MC simulation. We apply the IS technique The optimal simulation Markov chain is defined to be the Markov

wherec is the value in (2). O

to the simulation ofv,, . chain@ that maximizes thdg(c).
_Consider the IS simulation with a simulation Markov chélnLet
X" =(X1,...., Xy»),n=1,2,..., be arandom sequence generB. Lemmas for TMC an@-TMC
ated by@, andz?, ..., z, € Q" t_)ek: |n_depeqdent reallzatlops of For preparation, we give some lemmas.
X".ThelS estlmaté,L(Q) for v, with a simulation Markov chaiy Let @, = (@.(x)).cq denote a left eigenvector of the matrix (3)
is given by associated with¢, and recall thatv: = (w¢(x))-eq is a right eigen-
& o vector. Thew, is assumed to be normalized as
. _ 1 Po( ) N
J=1 TEQ
wherel 4, is the indicator function of the set,, . Similarly, letvg, . = (Vg «()).eq denote a left eigenvector of the
matrix (8) associated witlyy, s which is normalized as
lIl. THE OPTIMAL SIMULATION MARKOV CHAIN Z vg, s(2)ig, s(2) = 1.

Itis readily seen that the IS estimate (6) is unbiased [2]. Among the v

IS estimates, we would like to have the Markov chgithat minimizes | amma 1: The stationary distributiop, = (p¢()).co of a TMC
the variance [&, (Q)] of @, (Q). A simulation Markov chain? is

; is given by
assumed to be of the same type of irreducible Markov chain as the
underlying Markov chairf. pi(2) = wi(@)w(x), x € .
A. Twisted Markov Chain an@-Twisted Markov Chain Furthermore, the stationary distributigey,, . = (pg,s(2)).co of a
For the underlying Markov chaiff,, we define a TMCP,, t € R.  Q-TMC I, is given by
Recalling thaf\, is the largest eigenvalue of the matrix (3), let us denote po.+(2) = v0o..(2)Tg, +(x), v € Q. O

by w: = (w:(2))-c a right eigenvector associated with. Then, a

TMC P, is defined by Proof: ForP;, see[10, Lemma 1]. Here we give a proof iy .

By the definition ofvg, . andvg, 5, we have

tf (e, 1,/) Wy (.I'l) ) o RATU AT N
Pi(a'|z) = Po(a'|x)e ey | O T ERtER (M ; Py, (2 [x)vq, s(2)Tg, s (x) (12)
From the definition of\; andw., one can readily see that x) oo f ) =
N ' = 3 B ) G i) (9
Z Pt(,l’/|l‘) =1, 2 w2 ,
fry=r =g, (x)ig, ("), r € Q. (14)
holds. Lemma 2: Fort = #* that attains

Next, we define another type of TMC which plays an important role
when we evaluate the variance of an IS estimate. Consider the IS sim-
ulation with simulation Markov chai®. Fors € R, denote by(o, s
the largest eigenvalue of a matrix

sup (ct — log \¢)
teR

we haveEp,, [f] = c. Furthermore, fos = s*(Q) that attains

sup(cs —log Caq,s)

Bo(@'|2)” e, J) 8
(G ® e haverr,, . (11 = C
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Proof: ForP;, see[10, Lemma 2]. Here we give a proof g, . Next, we characterize the rate functibr) by the KL divergence.

First, we have .
Irst, W v Lemma 5 (see [10, Theorem 4]Fort¢ = t* that attains

d N (l(Q s
—)(cs—log (Q.s) =c=Cy @ 5 ; 4 _ loe
ds s=a(Q) Q, ds | _ o 'fgg(ct log A¢)
=0. (15)
we have
Sincevg, s isa right eigenvector associated wii, ., we have
I(¢) = D(P||Py) =  inf  D(P||R) (21)
»f(r = ) ! ~ P: Ep[fl=c
Z Q /| v, s(1) = (g, svo, (1), x € Q.
2'EQ ( i.e., P, is the dominating point [2] of the sdtP|Er[f] = ¢} with
(16) respect tas. O
By differentiating the both sides of (16) with respecstanultiplying Proof: For anyP with Ep[f]=c, we see from (7) and Lemma 4
by v, .(x), and taking summation with respectto€ €2, we have P(le) P |1)
from Lemma 1 - v ') log —~E1E) L AT T
dg D(P||Fy) Z,EQP(QL, x) log P (2'2) Bola']e) (22)
_ Q s i
-2 Paste d)fe ) = = an = D(P||Pi+) + ct* — log Aes (23)
z, ! €Q
>1(c). (24)
Substituting s = s"(Q) into (17), we see from (15) that
Er, (lf]= cholds. O  The equality holds if and only iP = P;-.. O
Lemma 3: For a TMC P, we have the following: We can now give a new proof for the following theorem with the KL
) Cpps = MAat, divergence.
i) vp, s(x) = we(x)ws+(x), 2 € Q, Theorem 3: For an arbitrary simulation Markov chaip, we have
iy Pp, s =Ps_y. | ,
) P, ! Jg(c) < 2I(c). (25)
Proof: We can confirm by a straightforward computation that
A As—, is an eigenvalue of the matrix The equality holds if and only i) = P;-. |
. ’ Proof: From (9), we have
@((( '||L)> e )> (18) ?
e xz, ! EQ AP
o _ . g Tenrl) g PR ) g v ()
and w¢(z)ws—¢(x) is its associated left eigenvector. iii) is easily Py(a'|2) Q( )
checked by i) and ii). O —log vg,s(x) —log (g,s- (26)
For two Markov chains Multiplying both sides of (26) byP,- (-, 2') and taking summation
/ with 2, 2’ € 2, we have, from Lemma 2 and (19)
= (P(l’ |l‘))m,x'esz
!
and ) Z P (z, 2') log —P;_?)’ S(/T|T)
= (Q('2))s, vrea S o('])
-
we define the KL divergencB (P||Q). Letp = (p(x ))Tegz denote the = > Pe(r,a)log PD(”E, ) +sc—log (o, (27)
stationary distribution o and P(x, ') = p(z)P(z'|z) denote the iy @'|z)

joint probability ofz, ' € 2. Note that

Z Pz, 2') = Z P, x) = p(o), x € Q. (29) )

»€Q # €Q sc—log (q,s =2D(Pi+||Po) — D(P+||Q) — D(Pe+|| Pg, s)
=21(c) = D(P|[Q) = D(P-||Pg.0).  (29)

Hence, from (27) and Lemma 5

If P(«'|x) = 0 holds for anyx, ' € Q with Q(«'|z) = 0, we
write P < () and say tha® is dominated by}). The KL divergence

D(P[Q) is defined by From (28) and Lemma 4, we have

Pla, o' log SE::K%» P <0 Jg(c) < 2I(c). (29)

D(P||Q) = { @, v/ EQ (20) The equality in (29) holds only i) = P;-. If Q = P;~, from Lemma 3

00, otherwise.

The KL divergence is a kind of distance measure introduced on the nf DB 1Pq, o) = if DL || Peir) (30)
space of Markov chains which plays a fundamental role in stochastic =0 (by puttings = 2¢"). (31)
problems concerning Markov chains. For example, the KL divergence
determines the power exponent of the most powerful test function Bfiis completes the proof. U

hypothesis testing for Markov chains [9], [11], or the error exponent of
the source coding of Markov chains [5], [11], etc.
The following is a fundamental property of the KL divergence.

Corollary 1: The degradation of the variance by using a not neces-
sarily optimal simulation Markov chaify, i.e., the differenc@l(c) —
Jg(e) is represented by the KL divergence

Lemma 4 (see [9]):For any Markov chaing” and , we have ,
D(P||Q) > 0. The equality holds if and only iP = Q. O 2L(c) = Jo(c) = D(P-||@) + inf D(Pr-|1Pg.5). (32)
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IV. GEOMETRIC RELATION OF P AND @

Let us consider the set of irreducible Markov chains on the state

space2 = {0, 1, ..., I'}. On the set\, two mutually dual coordi-
nate systemsg and¢ are introduced [1], [8], [10], namely

0, 2') =p(x)Pa'|r) = Pa, 2'),

P(a'|z)P(0]z")
P(0]x)P(0[0) ’

z, 2 €Q, 2 #0 (33)

B(z, z') = log z, 2 €Q, 2 £0 (34)
wherep = (p(z)).eq is the stationary distribution d® and P(x, )
is the joint probability ofz, =’ € Q.

Differential geometric structures are defined Anand statistical

guantities are represented in terms of geometric quantities, see [1], [8]

for a reference of geometry ah.

A straight line in thed coordinate is called geodesicwhich is in-
deed a geodesic defined by an affine connection introducedl fi].
A subsetH of A of the form

H={PeA| Z P(z, 2a(z, 2') = b, a(x, 2') € R, b € R}
z, €N

is called ahyperplaneFor a geodesi¢ and a hyperplané!, we say
that! intersects orthogonally té at P* if P* € N H and

>

x, '€, x/#0

hold for anyP(t) € [ with the# coordinat& ;) and anyl):, Q2 € H
with n coordinates)q, , nq,-
Then we have the following lemma.

dfpy (, 2)

dt (35)

(o, (=, 2') — no, (=, 2')) =0

Lemma 6 (Pythagoras, [1], [8]): Let! be a geodesic that intersectsVich can be depicted in Fig. 1.

orthogonally to a hyperplan® at P*. ThenforanyP € landQ € H,
we have

D(Q|IP) = D(QIIP") + D(P||Q). (36)

445
6 coordinate
He={Ep[f]=c}
Fig. 1. Geometric relation afy, Q. Py=, Pg, . in theé coordinate.
(See Lemma 2 for the definition ef (Q).) O

Proof: By Lemmas 2, 6, and Theorem 4, for ang R we have

D(FPi||Pq,s) = D(P+||Pq, s+(q)) + D(Pg, @ lPe,s) (40)

> D(P-||1Pg, s (@))- (41)

The equality in (41) holds if and only ¥ = s*(Q). O
Theorem 5: For the underlying Markov chaif, and a simulation

Markov chain@) ands € R, denote by, 6., 8¢, 0, s thed coordi-
nates ofFy, P, Q, Py, s, respectively. Then we have a relation

0g,s =00+6; -0 (42)
O

Proof: (42) is easily checked by the definition (34) of the
coordinate. O

From Fig. 1, we can see by geometric consideration that the optimal
simulation Markov chair) is Q = P;~ ands = 2¢*.

We will show some geometric properties of the IS simulation. First,

we notice that the set dP which satisfiesE»[f] = ¢ forms a hyper-
plane. Let us denote ith¥ y = { P € A|Ep[f] = ¢}. Then we have
the following theorem.

V. CONCLUSION

We investigated the IS simulation for the sample average of an output
sequence from an irreducible Markov chain. We provided a new proof

Theorem 4: The TMC F; is a geodesic and it intersects orthogoro; the optimality of a simulation Markov chain by means of the KL

nally to the hyperplanéd; at P,~. Furthermore, th&)-TMC Fg,
is a geodesic and it intersects orthogonally to the hyperpfapeat

Py q)-

divergence of Markov chains. Furthermore, we gave a geometric view
to the relation of the underlying Markov chain and a simulation Markov
chain.

Proof: For P, see [10, Theorem 5]. Here we give a proof for |namore complicated simulation problem, usually the optimal sim-

Py, . Letfg, - denote thd coordinate oy, ;. Then by the definition
(34) of 4 coordinate, it is easy to see that

0o, s(x, ') = b0, 0(z, 2') + s(60 1(x, 2') — 8o, o(x, 2')),

x,2 €Q, 2 £0. (37)

From (37), we see théty, , is a straight line in thé coordinate, hence
Py, s is a geodesic. For an¥,, s with § coordinatéd,, s and for any
Q1. Q2 € Hjy with 5 coordinates)q,,, 7¢.,, we have from (33), (34),
and (37) that

Z dbg, s(z, ')
ds

z,x'€Q, '#0

(77(21(337 '7:/) - 77(22(1'7 II)) =0. (38)

Thus, from Lemma 2, we see that the geodé3jc. intersects orthog-
onally to the hyperplané ; at P, o« (¢). O

Corollary 2: The infimum in (32) is attained by = s*(Q). Thus,
we have

2I(c) = Jo(c) = D(P+[|Q) + D(Fi- | Pg, «+(cy)-  (39)

ulation distribution is searched only from among the twisted distribu-
tions. This is because the set of twisted distributions is one-dimensional
and the optimization is easy. The introduction of the geometric view to
the IS simulation can yield a simple proof for the proposition that the
optimal simulation distribution among a wider class is necessarily a
twisted distribution.
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probability of error is difficult because the Bayesian error probability
Wei Shi Member, IEEEThomas W. SunStudent Member, IEEERNd  is not a smooth function, i.e., its first derivative is a discontinuous func-
Richard D. WeselMember, IEEE tion. Hashlamoun and Varshney [1], [5] have overcome this difficulty
by using a smooth bound on the Bayesian error probability to approx-
imately determine the optimal pair, F'). Avi-ltzhak and Diep [6]
Abstract—n this correspondence, we present a technique to find the provided an even tighter bound leading to a very good approximation.

optimal threshold + for the binary hypothesis detection problem with r . . N
identical and independent sensors. The sensors all use an identical and Even so, these techniques still produce a minimization problem that

single threshold + to make local decisions, and the fusion center makes May have local minima, since neither convexity nor quasi-convexity
a global decision based on ther local binary decisions. For generalized was shown in these references.
Gaussian noises and some non-Gaussian noise distributions, we show that  |n this correspondence, we show that for any admissible fusion rule

for any admissible fusion rule, the probability of error is a quasi-convex (i ] ; ; s )
function of threshold +. Hence, the problem decomposes into a series af F; (i.e., anyF; thatis optimal for at least ong), P (r, i) defined asthe

quasi-convex optimization problems that may be solved using well-known Probability of error for(r, F;) is a quasi-convex function of. Quasi-

techniques. convexity [7] means that every sublevel $et = {7: P.(7, i) < a}
Assuming equala priori probability, we give a sufficient condition of the  is convex. The admissible functiois are simply threshold tests of the

non-Gaussian noise distributiong(z) for the probability of error to be  5rm

quasi-convex. Furthermore, this technique is extended to Bayes risk and

Neyman—Pearson criteria. We also demonstrate that, in practice, it takes

fewer than twice as many binary sensors to give the performance of infinite —m i<

precision sensors in our scenario. 5= Fi(k) = { s c <1

m, itk > @)

Index Terms—Distributed detection, fusion rule, generalized Gaussian

noise, har ision, non- ian noise. . . . .
oise, hard decision, non-Gaussian noise Hence, the problem decomposes into a series gfiasi-convex opti-

mization problems (one for eadh) that may be solved exactly using
I. INTRODUCTION a variety of techniques including, for example, the ellipsoid algorithm

Consider distributed detection efc {—m, m}, where theth of n
local sensors observes = s + z; with independent and identically
distributed (i.i.d.) noise;. Theith sensor compares to a threshold
7 to compute a binary decisian as

Section Il shows the proof of the quasi-convexity of the probability
of error versusr for every admissible fusion rulé&; with general-
ized Gaussian noise. In Section Ill, with eq@apriori probability,

a sufficient condition of the non-Gaussian noise distributjon) for
0. whens; <7 the probability of error to be quasi-convex is given and some non-
Ui = { Gaussian noise distributions that satisfy this condition are listed. Sec-
tion IV shows some illustrative examples. Section V extends this tech-

) ) ) nique to Bayes risk and Neyman-Pearson criterion. Section VI con-
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