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Proof: Directly by Lemma I.1 and Lemma I.2.

Corollary I.1: Let f : [0; 1] �! be a continuous function,
f(0) � 0, the third derivative f exists in (0; 1), f (x) � 0 and
f (x) � 0 for any x 2 (0; 1). Then f is additivity-concave.

Proof: If f � 0, then f is a decreasing function. Combining
f � 0, the inequality (10) is easily verified. By Lemma I.2, f is
additivity-concave.
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Application of Tauberian Theorem to the Exponential
Decay of the Tail Probability of a Random Variable

Kenji Nakagawa, Member, IEEE

Abstract—In this correspondence, we give a sufficient condition for the
exponential decay of the tail probability of a nonnegative random variable.
We consider the Laplace–Stieltjes transform of the probability distribution
function of the random variable. We present a theorem, according to which
if the abscissa of convergence of the LS transform is negative finite and the
real point on the axis of convergence is a pole of the LS transform, then
the tail probability decays exponentially. For the proof of the theorem, we
extend and apply so-called a finite form of Ikehara’s complex Tauberian
theorem by Graham–Vaaler.

Index Terms—Complex Tauberian theorem, exponential decay,
Graham–Vaaler’s finite form, Laplace transform, tail probability of
random variable.

I. INTRODUCTION

The purpose of this correspondence is to give a sufficient condi-
tion for the exponential decay of the tail probability of a nonnegative
random variable. For a nonnegative random variable X;P (X < x) is
called the tail probability of X . The tail probability decays exponen-
tially if the limit

lim
x!1

1

x
logP (X > x) (1)

exists and is a negative finite value.
For the random variable X , the probability distribution function of

X is denoted by F (x) = P (X � x) and the Laplace–Stieltjes trans-
form of F (x) is denoted by '(s) =

1

0
e�sxdF (x). We will give

a sufficient condition for the exponential decay of the tail probability
P (X > x) based on analytic properties of '(s).

In [11], we obtained a result that the exponential decay of the tail
probability P (X > x) is determined by the singularities of '(s) on
its axis of convergence. In this correspondence, we investigate the case
where '(s) has a pole at the real point of the axis of convergence, and
reveal the relation between analytic properties of '(s) and the expo-
nential decay of P (X > x).

The results obtained in this correspondence will be applied to
queueing analysis. In general, there are two main performance mea-
sures of queueing analysis, one is the number of customers Q in the
system and the other is the sojourn time W in the system. Q is a
discrete random variable and W is a continuous one. It is important to
evaluate the tail probabilities P (Q > q) and P (W > w) for designing
the buffer size or link capacity in communication networks. Even
in the case that the probability distribution functions P (Q � q) or
P (W � w) cannot be calculated explicitly, their generating functions
Q(z) = 1

q=0
P (Q = q)zq or W (s) =

1

0
e�swdP (W � w) can

be obtained explicitly in many queues. Particularly, in M/G/1 queue,
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Q(z) and W (s) are given explicitly by Pollaczek-Khinchin formula
[7]. So, in this correspondence, we assume that we have the explicit
form of a generating function and then investigate the exponential
decay of the tail probability based on the analytic properties of the
generating function.

Such kind of researches have been studied motivated by a require-
ment for evaluating a packet loss probability of a light tailed traffic in
the packet switched network.

An approach by the complex analysis is seen in [3]. A sufficient con-
dition is given in [3] for the decay of the stationary probability of an
M/G/1 type Markov chain with boundary modification and the result is
applied to MAP/G/1 queue. Let � = (�n) denote the stationary prob-
ability of an M/G/1 type Markov chain with boundary modification,
and �(z) =

n
�nz

n the probability generating function of � with
the radius of convergence r > 0. In [3], they proved a theorem that
if z = r is a pole of order 1 and is the only singularity on the circle
of convergence jzj = r, then there exists K > 0; ~r > r such that
�n = Kr�n +O(~r�n). Our Theorem 1 below is an extension of this
theorem in [3].

In [2], for the stationary queue lengthQ of a queueing system which
satisfies some large deviations conditions, it is shown that the P (Q >

n) decays as P (Q > n) '  exp(��n) with positive constants  and
�. In [4], it is shown that the stationary waiting time W and queue
length Q decay exponentially for a broad class of queues with sta-
tionary input and service. In [13], [14], the stationary distribution of
M/G/1 or G/M/1 type Markov chains are deeply studied. In [16], the
tail of the waiting time in PH/PH/c queue is investigated. In [9], a suffi-
cient condition is given for the stationary probability of a Markov chain
of GI/G/1 type to be light tailed.

This correspondence is organized as follows. In Section II, an appli-
cation of our results to queueing analysis is presented. In Section III, an
example of a random variable is given whose tail probability does not
decay exponentially. In Section IV, some Tauberian theorems are in-
troduced and the relation to our problems is stated. In Section V, some
lemmas are given and our main theorem is proved in the case of a pole
of order 2. In Section VI, the statement of lemmas and theorems are
presented for a pole of arbitrary order. Finally, we summarize out re-
sults in Section VII.

Throughout this correspondence, we use the following symbols.
; ; ;< denote the set of complex numbers, real numbers, integers,

and the real part of a complex number, respectively.

II. APPLICATION TO QUEUEING ANALYSIS

The author already had results on the exponential decay of the tail
probability for a discrete random variable [10], and those for a general
random variable [11]. The main theorem in [10] is as follows.

Theorem 1: [10]: Let X be a random variable taking nonnegative
integral values, and f(z) be the probability generating function of X .
The radius of convergence of f(z) is denoted by r and 1 < r < 1

is assumed. If the singularities of f(z) on the circle of convergence
jzj = r are only a finite number of poles, then

lim
n!1

1

n
logP (X > n) = � log r: (2)

We can apply Theorem 1 to queueing analysis as follows.

Fig. 1. The poles of W (s) in (5) with � = 0:5; s = � + i� .

Consider, for example, the number of customers Q in the steady
state of M/D/1 queue with traffic intensity �. The probability gener-
ating function Q(z) = 1

q=0
P (Q = q)zq of Q is given by Pol-

laczek–Khinchin formula [7]

Q(z) =
(1� �)(z � 1) exp(�(z � 1))

z � exp(�(z � 1))
: (3)

The radius of convergence of Q(z) is equal to the unique solution
z = r > 1 of the equation z � exp(�(z � 1)) = 0. Since Q(z) is
meromorphic in the whole finite complex plane jzj <1, in particular,
the singularities of Q(z) on the circle of convergence jzj = r are only
a finite number of poles. Therefore, by Theorem 1, we know that the
tail probability P (Q > q) decays exponentially as q ! 1.

Next, in [11], the exponential decay of the tail probabilityP (X > x)

is investigated for a general nonnegative real valued random variable
X . The main theorem in [11] is as follows.

Theorem 2: [11]: Let X be a nonnegative random variable, and
'(s) be the Laplace–Stieltjes transform of the probability distribution
function of X . The abscissa of convergence of '(s) is denoted by �0
and �1 < �0 < 0 is assumed. If the singularities of '(s) on the axis
of convergence <s = �0 are only a finite number of poles, then we
have

lim
x!1

1

x
logP (X > x) = �0: (4)

Let us apply Theorem 2 to queueing analysis. In this case, however,
the situation is somewhat different from that in the case of discrete
random variable.

Consider the sojourn time W in M/D/1 queue with traffic intensity
�. Writing W (s) as the Laplace–Stieltjes transform of the probability
distribution function P (W � w) of W , we have [7]

W (s) =
(1� �)s exp(�s)

s� �+ � exp(�s)
: (5)

The abscissa of convergence of W (s) is the unique negative solution
s = �0 of the equation s � � + � exp(�s) = 0. We can see that
the singularity of W (s) on the axis of convergence <s = �0 is only
a simple pole s = �0 [12]. In fact, the location of the poles of W (s)

are shown in Fig. 1. The abscissa of convergence is �0 = �1:26 for
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� = 0:5. Though, it is not easy to prove that s = �0 is the only
singularity of W (s) on the axis of convergence. In order to prove it,
we need some theorems such as Rouché’s theorem.

The statement of Theorems 1 and 2 are formally quite the same, but
to verify that the assumption in Theorem 2 holds is more difficult than
Theorem 1. This is because of the difference of the convergence re-
gions. In Theorem 1, the boundary of the convergence region of a power
series is a circle, which is a compact set, so if the probability generating
function is meromorphic, then the singularities on the circle of conver-
gence are necessarily a finite number of poles. On the other hand, in
Theorem 2, the axis of convergence is not a compact set, so we need
some verification to see that the singularities on the axis of convergence
are a finite number of poles. We want some simple sufficient condition
to guarantee the exponential decay of the tail probability. We see, in
fact, that the conclusion of Theorem 2 is really stronger than desired,
so it may be possible to relax the assumption that the number of poles
on the axis of convergence is finite.

We have the following theorem. This is the main theorem in this
correspondence.

Theorem 3: Let X be a nonnegative random variable, and F (x) =

P (X � x) be the probability distribution function of X . Let

'(s) =
1

0

e
�sx

dF (x); s = � + i� 2 (6)

be the Laplace–Stieltjes transform of F (x) and �0 be the abscissa of
convergence of '(s). We assume �1 < �0 < 0. If s = �0 is a pole
of '(s), then we have

lim
x!1

1

x
logP (X > x) = �0: (7)

Remark 1: Since F (x) is nondecreasing, s = �0 is a singularity of
'(s) by Widder [17, p. 58, Theorem 5b]. We assume in Theorem 3 that
this singularity is a pole.

III. EXAMPLE OF RANDOM VARIABLE WHOSE TAIL PROBABILITY

DOES NOT DECAY EXPONENTIALLY

We show an example of a nonnegative random variable whose tail
probability does not decay exponentially, i.e., x�1 logP (X > x) does
not have a limit [11].

For any positive integer h, define a sequence fcng1n=0 by

c0 = 0;

cn = cn�1 + hc ; n = 1; 2; . . . :
(8)

We define a function (x) by

(x) = h
�c

; for cn � x < cn+1; n = 0; 1; . . . : (9)

For arbitrary �0 < 0, put F �(x) = 1 � e� x(x); x � 0. We
see that F �(x) is right continuous and non-decreasing with F �(0) =
0; F �(1) = 1, hence F �(x) is a distribution function. Let us define
X� as a random variable with probability distribution function F �(x).
We write '�(s) as the Laplace-Stieltjes transform of F �(x). The fol-
lowing theorem shows that X� is an example of a random variable
whose tail probability does not decay exponentially.

Theorem 4: (See [11]): Let X�; F �(x), and '�(s) be defined as
above. Then, the abscissa of convergence of '�(s) is �0, and we have

lim inf
x!1

1

x
logP (X� > x) � �0 � log h

< �0

= lim sup
x!1

1

x
logP (X� > x):

All the points on the axis of convergence <s = �0 are singularities of
'(s).

Remark 2: From Widder [17, p. 44, Theorem 2.4e]

lim sup
x!1

x
�1 logP (X > x) = �0

holds under the condition �0 < 0 and no other condition is necessary.
Meanwhile, Theorem 4 implies that some additional condition is re-
quired for lim infx!1 x�1 logP (X > x) = �0. In our Theorem 3,
the additional condition is the analytic property of '(s). The example
X� in Theorem 4 is in a sense pathological, so we can expect that the
exponential decay is guaranteed by some weak condition.

IV. TAUBERIAN THEOREMS OF LAPLACE TRANSFORM

Theorem 3 deals with an issue of how the analytic properties of the
Laplace–Stieltjes transform '(s) determines the asymptotic behavior
of the tail probability P (X > x). '(s) converges in the region <s >
�0 and defines an analytic function in this region. Thus, according to
Widder [17, p. 40, Theorem 2.2b], we see that P (X > x) = o(e�x)

as x!1 for �0 < � < 0. The main problem is whether P (X > x)

decays as P (X > x) = O(e� x) as x ! 1. So, it is appropriate to
apply Tauberian theorems of Laplace transform to this problem.

In general, the relation between a function f and its transform
Tf (such as power series, Laplace transform, etc.) is investigated by
Abelian theorems or Tauberian theorems. In Abelian theorems, the
asymptotic behavior of Tf is studied from the asymptotic behavior
of f . Conversely, in Tauberian theorems, the asymptotic behavior of
f is studied from that of Tf . In Tauberian theorems, generally, some
additional condition is required for f . Such an additional condition is
called a Tauberian condition. See [8] for the survey of the history and
recent developments of Tauberian theory.

The following is a well-known Tauberian theorem.

Tauberian Theorem: (Widder [17, p. 187, Theorem 3b]): For a nor-
malized function �(x) of bounded variation in [0; L] for every L > 0,
let the integral

'(s) =
1

0

e
�sx

d�(x)

exist for s > 0 and let lims!0+ '(s) = A. Then

lim
x!1

�(x) = A

holds if and only if

x

0

td�(t) = o(x); x!1: (10)

In the above theorem, Tauberian condition is (10). So, in this the-
orem, to study the asymptotic property of a function �, other asymp-
totic property is assumed. I think that this type of Tauberian theorem is
not easy to apply to some practical problems.
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Ikehara first succeeded [6] in removing such asymptotic conditions
from Tauberian theorem, instead, he posed some analytic properties of
'(s) on the boundary of convergence region.

A. Ikehara’s Tauberian Theorem

The following is Ikehara’s Tauberian theorem, in which an analytic
property of Laplace-Stieltjes transform is assumed. The Tauberian con-
dition is the non-decreasing property of the function S(t).

Theorem: (Ikehara [6], See Also [8]): Let S(t) vanish for t < 0, be
non-decreasing, right continuous, and the integral

'(s) =
1

0

e
�st

dS(t); s = � + i� (11)

exist for � > 1. There exists a constant A such that the analytic func-
tion

'0(s) = '(s)�
A

s� 1
; <s > 1 (12)

converges as � # 1 to the boundary function '0(1+ i� ) uniformly (or
in L1) for �� < � < � with any � > 0. Then we have

lim
t!1

e
�t
S(t) = A: (13)

B. Finite Form of Ikehara’s Theorem by Graham–Vaaler

In Ikehara’s theorem, since � > 0 is arbitrary, '(s) is assumed to
be analytic on the whole axis of convergence <s = �0 except the pole
s = �0. As mentioned previously, because the axis of convergence
is not compact, it is difficult to check whether '(s) satisfies the the-
orem assumption or not. The following extension by Graham–Vaaler
[5] solves this difficulty by relaxing the limit (13) of e�tS(t). This
theorem is called a finite form of Ikehara’s theorem because � is re-
stricted to some range of values.

We make preliminary definitions in order to state Graham-Vaaler’s
theorem.

For ! > 0, define a function E!(t) by

E!(t) =
e�!t; t � 0

0; t < 0:
(14)

For � > 0, a real function f(x) is of type � if f(x) is the restriction to
of an entire function f(z) of exponential type �. An entire function

f(z) is of exponential type � [15] if it satisfies

jf(z)j � C exp(�jzj); z 2 ; C > 0; � > 0: (15)

A function f(x) is a majorant for a function g(x) if f(x) � g(x)

for any x 2 , and f(x) is a minorant for g(x) if f(x) � g(x) for
any x 2 .

Theorem: (Graham–Vaaler [5], See Also [8]): Let S(t) vanish for
t < 0, be nondecreasing, right continuous, and the integral

'(s) =
1

0

e
�st

dS(t); s = � + i� (16)

exist for � > 1. There exists a constant A such that the analytic
function

'0(s) = '(s)�
A

s� 1
; <s > 1 (17)

converges as � # 1 to the boundary function '0(1+ i� ) uniformly (or
in L1) for �� < � < � with some � > 0. Then, for any majorant
M(t) for E1(t) of type � and any minorant m(t) for E1(t) of type �,
we have

A
1

�1

m(t)dt � lim inf
t!1

e
�t
S(t) (18)

� lim sup
t!1

e
�t
S(t)

� A
1

�1

M(t)dt: (19)

V. MAIN THEOREM

We write below our main theorem again. By this theorem, we do not
need to check the location of singularities of the LS transform'(s) and
if '(s) is meromorphic then the assumption of the theorem is neces-
sarily satisfied.

Theorem 3: Let X be a nonnegative random variable, and F (x) =
P (X � x) be the probability distribution function of X . Let

'(s) =
1

0

e
�sx

dF (x) (20)

be the Laplace–Stieltjes transform of F (x) and �0 be the abscissa of
convergence of '(s). We assume �1 < �0 < 0. If s = �0 is a pole
of '(s), then we have

lim
x!1

1

x
logP (X > x) = �0: (21)

It is possible to give a proof for arbitrary order of poles, but the de-
scription becomes very complicated, so we will prove only for the pole
of order 2. A proof for higher order poles is easily obtained from the
proof for the pole of order 2.

A. Preliminary Lemmas for the Proof of Main Theorem

For ! > 0, we define functions
R(v) =

v3

1� e�v
; v 2 (22)

~R!(v) = R(v + !)�R(!)�R
0(!)v�

R00(!)

2
v
2
; v 2 :

(23)

By calculation, we have
R
0(v) =

3v2

1� e�v
�

v3e�v

(1� e�v)2
(24)

R
00(v) =

6v

1� e�v
�

6v2e�v

(1� e�v)2
+

2v3e�2v

(1� e�v)3

+
v3e�v

(1� e�v)2
(25)

R
000(v) =

6

1� e�v
�

18ve�v

(1� e�v)2
+

18v2e�2v

(1� e�v)3

+
9v2e�v

(1� e�v)2
�

6v3e�3v

(1� e�v)4
�

6v3e�2v

(1� e�v)3

�
v3e�v

(1� e�v)2
(26)

R
(4)(v) =

�24e�v

(1� e�v)2
+

72ve�2v

(1� e�v)3
+

36ve�v

(1� e�v)2

�
72v2e�3v

(1� e�v)4
�

72v2e�2v

(1� e�v)3
�

12v2e�v

(1� e�v)2

+
24v3e�4v

(1� e�v)5
+

36v3e�3v

(1� e�v)4
+

14v3e�2v

(1� e�v)3

+
v3e�v

(1� e�v)2
: (27)
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We have the following lemmas.

Lemma 1: There exists !0 > 0 such that for any ! � !0

~R!(v) � 0; v � 0
~R!(v) � 0; v < 0:

(28)

Proof: From (26), we have R000(v) ' 6 for sufficiently large
v > 0, or more precisely, for any � > 0 there exists v0 > 0 such
that jR000(v)�6j < � holds for v � v0. Hence, by taking � sufficiently
small, we have R000(v) > 5 > 0 for v � v0, especially, R00(v) is
monotonic increasing for v � v0. Further, from (25) we have

lim
v!1

R
00(v) =1 (29)

lim
v!�1

R
00(v) = 0: (30)

Write C � maxv�v R00(v), which is finite by (30). From (29), there
exists !0 with R00(!0) = C + 1 and !0 � v0. Then, we have

max
v�!

R
00(v) = max max

v�v
R
00(v); max

v �v�!
R
00(v) (31)

= max(C;C + 1) (32)

= C + 1 (33)

= R
00(!0): (34)

Since R00(v) is monotonic increasing for v � !0(� v0), we have

max
v�!

R
00(v) = R

00(!); 8! � !0: (35)

Next, for ! � !0, we have

max
v�!

R
00(v) = R

00(!); 8! � !0 (36)

because R00(v) is monotonic increasing for v � !(� !0 � v0). From
(23), we have ~R00!(v) = R00(v + !) � R00(!), thus for ! � !0, we
have from (35), (36)

~R00!(v)
� 0; v � 0

� 0; v < 0:
(37)

From ~R0!(0) = 0, we have ~R0!(v) � 0; v 2 . So, ~R!(v) is mono-
tonic increasing in v. Then, ~R!(0) = 0 implies (28).

Lemma 2: For sufficiently large v > 0

R
0(v) <

3v2

1� e�v
(38)

R
000(v) <

6

1� e�v
: (39)

Proof: (38) is easily obtained from (24). We have from (26)

R
000(v) =

6

1� e�v
� v

3
e
�v(1 +O(v�1)); v !1 (40)

thus, (39) holds.

Lemma 3: There exists !0 > 0 such that for any ! � !0

~R!(v) �
1

1� e�!
v
3
; v � 0: (41)

Proof: By the mean value theorem and Lemma 2, there exists v0
with ! � v0 � v + ! such that

~R!(v)

v3
=

R000(v0)

3!

<
1

3!
�

6

1� e�v

�
1

1� e�!
:

Lemma 4: There exists !0 > 0 such that for any ! � !0

�
0

�1

~R!(v)e
tv
dv <

R000(!)

t4
; t > 0: (42)

Proof: By calculation, for ! > 0

0

�1

~R!(v)e
tv
dv =

0

�1

R(v+!)etvdv�
R(!)

t
+
R0(!)

t2
�
R00(!)

t3

(43)
and from integration by parts

0

�1

R(v + !)etvdv =
R(!)

t
�

R0(!)

t2
+

R00(!)

t3
�

R000(!)

t4

+
1

t4

0

�1

R
(4)(v + !)etvdv (44)

where R(4)(v) denotes the fourth derivative ofR(v). Hence from (43),
(44), we have

R000(!)

t4
+

0

�1

~R!(v)e
tv
dv

=
1

t4

0

�1

R
(4)(v + !)etvdv

=
e�!t

t4

!

�1

R
(4)(v)etvdv:

Then, we will prove that there exists !0 > 0 such that for any ! � !0

!

�1

R
(4)(v)etvdv > 0; t � 0: (45)

We divide into two cases t > 1 and 0 � t � 1.
First, let us consider the case t > 1. From (27), we have

R
(4)(v) =

v3e�v(1 +O(v�1)); v !1

O(v3ev); v ! �1
(46)

especially, R(4)(v) is bounded in . From (46) we see that there exist
constants C > 0; v0 > 0 with

R
(4)(v) �

1

2
v
3
e
�v
; v � v0

�C; v < v0:
(47)

Thus, for t > 1

!

�1

R
(4)(v)etvdv

� �C
v

�1

e
tv
dv +

1

2

!

v

v
3
e
(t�1)v

dv (48)
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� �Cetv +
v30
2

e!(t�1) � ev (t�1)

t� 1
(49)

=
e!(t�1) � ev (t�1)

t� 1

v30
2
�

Cetv

e!(t�1) � ev (t�1)
: (50)

For any � > 0, putting !0 = v0 + ev =�, we have for any ! � !0

e!(t�1) � e(v +e =�)(t�1) (51)

� ev (t�1) 1 +
ev

�
(t� 1) ; t > 1 (52)

or
(t� 1)ev t

e!(t�1) � ev (t�1)
� �; t > 1: (53)

Therefore, we have from (50), (53), by taking � sufficiently small, for
! � !0

!

�1

R(4)(v)etvdv > 0; t > 1: (54)

Next, we consider 0 � t � 1. We first restrict 0 < t < 1. The cases
t = 0 and t = 1 will be considered later. We calculate

1

�1

R(4)(v)etvdv; 0 < t < 1: (55)

Here, we put t = �s and

�(s) =
1

�1

R(4)(v)e�svdv; �1 < s < 0: (56)

�(s) is the bilateral Laplace transform [17] of R(4)(v). The region of
convergence is �1 < <s < 1.

We apply the following theorem.

Theorem A: (Widder [17, p. 239, Theorem 3d]): Let �(v) be of
bounded variation on any finite interval. If the integral

f(s) =
1

�1

e�svd�(v) (57)

exists for s = s0;<s0 < 0, and �(1) = 0, then

f(s0) = s0
1

�1

e�s v�(v)dv: (58)

(end of theorem citation).

Let us define a step function �(v) as

�(v) =
1; v � 0

0; v < 0
(59)

and define �1(v) = R000(v)� 6�(v). Then

1

�1

e�svd�1(v) =
1

�1

e�svR(4)(v)dv� 6 <1 (60)

and �1(1) = 0, so �1(v) satisfies the assumptions of the above The-
orem A. Hence, we have from Theorem A and (60)

1

�1

e�svR(4)(v)dv � 6 = s
1

�1

e�sv�1(v)dv: (61)

Next, define �2(v) = R00(v)� 6v�(v), then from (60) and (61)

1

�1

e�svd�2(v) =
1

�1

e�sv�1(v)dv <1 (62)

and �2(1) = 0, so �2(v) satisfies the assumptions of Theorem A.
Hence, we have from Theorem A and (62)

1

�1

e�sv�1(v)dv = s
1

�1

e�sv�2(v)dv: (63)

In a similar way, by defining �3(v) = R0(v)� 3v2�(v); �4(v) =
R(v)� v3�(v), we have from Theorem A

1

�1

e�sv�2(v)dv = s
1

�1

e�sv�3(v)dv (64)

1

�1

e�sv�3(v)dv = s
1

�1

e�sv�4(v)dv: (65)

Therefore, from (61), (63), (64), (65) we have

1

�1

e�svR(4)(v)dv � 6

= s4
1

�1

e�sv�4(v)dv

= s4
0

�1

v3e�sv

1� e�v
dv +

1

0

v3e�sv

ev � 1
dv

�1 < s < 0:

By the change of variables t = �s

1

�1

R(4)(v)etvdv

= 6 + t4
0

�1

v3etv

1� e�v
dv +

1

0

v3etv

ev � 1
dv (66)

= 6 + t4
1

0

v3e�tv

ev � 1
dv +

1

0

v3etv

ev � 1
dv (67)

> 6; 0 < t < 1: (68)

Next consider t = 0. Define a function g(v) as

g(v) =
R(4)(v) ev=2; v � 0

R(4)(v) ; v < 0:
(69)

Then from (46), g(v) is integrable and jR(4)(v)jetv � g(v); v 2 ,
for 0 < t < 1=2. By the dominating convergence theorem

1

�1

R(4)(v)dv

= lim
t!0+

1

�1

R(4)(v)etvdv

= 6 + lim
t!0

t4 � lim
t!0+

0

�1

v3etv

1� e�v
dv +

1

0

v3etv

ev � 1
dv

= 6 + lim
t!0

t4 �
0

�1

v3

1� e�v
dv +

1

0

v3

ev � 1
dv

= 6: (70)

Last, for t = 1, we have from (46)

1

�1

R(4)(v)evdv =1: (71)

Summarizing (68), (70), and (71), we obtain

1

�1

R(4)(v)etvdv � 6; 0 � t � 1: (72)
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Now we show that there exists !0 > 0 such that for any ! � !0

!

�1

R(4)(v)etvdv > 5; 0 � t � 1: (73)

Define

�!(t) =
!

�1

R(4)(v)etvdv; 0 � t � 1; ! > 0: (74)

For a fixed ! > 0, the integral in (74) converges for t > �1. In fact,
from (27), for any � > 0

R(4)(v) � e(1��)v (75)

holds for any v < 0 with sufficiently large absolute value. By the
change of variables v = ! � u in the integral in (74), we have

�!(t) = et!
1

0

R(4)(! � u)e�tudu: (76)

Hence from (75), the integral in (76) converges for t > �1. Then
from Widder [17, p. 57, Theorem 5a], we see that �!(t) is analytic
for <t > �1, especially �!(t) is continuous for 0 � t � 1.

For a fixed t with 0 � t � 1, from (46) there exists !� > 0 (which
does not depend on t) such that for ! > !�; �!(t) is monotonic in-
creasing in !.

From (72) for any t with 0 � t � 1, there exists !(t) � !� such
that

�!(t)(t) =
!(t)

�1

R(4)(v)etvdv > 5: (77)

By the continuity property of �!(t)(u) in u, there is � = �(t; !(t)) > 0
such that

�!(t)(u) > 5; u 2 (t� �; t+ �) \ [0; 1]: (78)

Define Ut = (t � �; t + �) \ [0; 1], then Ut is an open set in [0; 1]
and t 2 Ut, so 0�t�1 Ut = [0; 1]. Since [0; 1] is compact, there
exist t1; . . . ; tn 2 [0; 1] with Ut [ � � � [ Ut = [0; 1]. Let !0 =
max1�k�n !(tk), then for any ! � !0

�!(t) � �!(t )(t); t 2 Ut (79)

> 5 (80)

holds for t 2 [0; 1]. From (54), (80) we have completed the proof of
Lemma 4.

Now, for ! > 0, define two functions M!(t);m!(t) as follows:

M!(t) =
1

6

sin�t

�

4

Q!(t); �1 < t <1 (81)

Q!(t) =

1

n=0

e�n!
6

(t� n)4
�

6!

(t� n)3
+

3!2

(t� n)2
�

!3

t� n

+
R(!)

t
�
R0(!)

t2
+
R00(!)

t3
(82)

m!(t) = M!(t)�
1

1� e�!
sin�t

�t

4

; �1 < t <1:

(83)

Lemma 5: There exists !0 > 0 such that for any ! � !0;M!(t) is
a majorant for E!(t) of type 4� and 1

�1
M!(t)dt < 1, moreover,

m!(t) is a minorant for E!(t) of type 4� and 1

�1
m!(t)dt > 0.

Proof: First, consider t < 0. We have
1

0

R(v + !)etvdv

=
1

!

R(u)et(u�!)du (84)

= e�!t
1

!

u3etu
1

n=0

e�nudu: (85)

From the monotone convergence theorem and integration by parts
1

0

R(v + !)etvdv

=

1

n=0

e�n!
6

(t� n)4
�

6!

(t� n)3
+

3!2

(t� n)2
�

!3

t� n
:

Then, we have from (23)
1

0

~R!(v)e
tvdv = Q!(t); t < 0: (86)

From Lemmas 1, 3, for any ! � !0

0 � ~R!(v) �
1

1� e�!
v3; v � 0 (87)

hence from (86)

0 � Q!(t) �
6

1� e�!
�
1

t4
; t < 0 (88)

and by (81) we have

0 �M!(t) �
1

1� e�!
sin�t

�t

4

; t < 0: (89)

Next, consider t > 0; t =2 . Let us calculate � 0

�1
~R!(v)e

tvdv.
We have

0

�1

R(v + !)etvdv = e�!t
0

�1

+
!

0

R(u)etudu: (90)

From the monotone convergence theorem and integration by parts
0

�1

R(u)etudu =

1

n=1

6

(t+ n)4
(91)

and
!

0

R(u)etudu =

1

n=0

6

(t� n)4

+ e!t
1

n=0

e�n!
!3

t� n
�

3!2

(t� n)2

+
6!

(t� n)3
�

6

(t� n)4
:

We obtain a formula
1

n=�1

1

(t� n)4
=

�

sin�t

4

(92)

by the same argument as in Ahlfors [1, p. 188]. From (92)

�
0

�1

~R!(v)e
tvdv = Q!(t)� 6e�!t

�

sin�t

4

: (93)

Hence, from Lemmas 1, 4, for ! � !0

0 � Q!(t)� 6e�!t
�

sin�t

4

�
R000(!)

t4
(94)
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and from Lemma 2

e�!t �M!(t) � e�!t +
1

1� e�!

sin�t

�t

4

; t > 0; t =2 :

(95)

By continuity, (95) holds for all t > 0.
For t = 0; E!(0) = M!(0) = 1. Therefore from (89), (95) we see

that M!(t) is a majorant for E!(t) for ! � !0.
M!(t) is of type 4� by the following reason. Consider a rectangle

�n in the complex plane with vertices (n + 1=2) + i; (�n � 1=2) +
i; (�n � 1=2)� i; (n + 1=2)� i; n = 1; 2; . . .. From j sin�zj2 =
sin2 �t + sinh2 �y; z = t + iy, we see that j sin�zj2 is bounded by
a constant on �n, and jQ!(z)j is also bounded by a constant on �n.
Both constants are independent on n. Thus, by letting n ! 1, from
the maximum principle, we have for some constant C

jM!(z)j � C; for jyj � 1: (96)

Next, since jQ!(z)j is bounded in jyj � 1, we have

jM!(z)j � Cj sin�zj4; for jyj � 1: (97)

By the formula sin�z = (ei�z � e�i�z)=2i, we have

j sin�zj4 � e4�jzj; z 2 : (98)

From (96), (97), (98), we have

jM!(z)j � Ce4�jzj; z 2 (99)

which implies M!(t) is of type 4�.
1

�1
M!(t)dt < 1 is trivial from (89), (95), but we calculate the

integral. Note that

1

�1

R(!)

t
�

1

n=0

e�n! !3

t� n

sin�t

�

4

dt

= �!3
1

�1

1

n=0

ne�n! 1

t(t� n)

sin�t

�

4

dt: (100)

It is easy to check the following inequalities:

jt(t� n)j �
(t� n)2; t � n

t2; t < 0

and
1

jt(t� n)j

sin�t

�

4

=
sin2 �t

�2
sin�t

�t

sin�(t� n)

�(t� n)

�
1

�2
; t 2 :

Hence, we have

1

�1

1

t(t� n)

sin�t

�

4

dt

�
0

�1

1

t2
sin�t

�

4

dt+
n

0

1

�2
dt

+
1

n

1

(t� n)2
sin�t

�

4

dt

=
1

�1

1

t2
sin�t

�

4

dt+
n

�2

From the dominating convergence theorem, we can calculate (100) as
follows (by considering Cauchy’s principal value):

1

�1

R(!)

t
�

1

n=0

e�n! !3

t� n

sin�t

�

4

dt

= !3
1

n=0

e�n!

1

�1

1

t

sin�t

�

4

dt

�
1

�1

1

t� n

sin�t

�

4

dt (101)

= 0: (102)

Therefore, we have

1

�1

M!(t)dt

=
1

6

1

n=0

e�n!

1

�1

sin�t

�

4
6

(t� n)4
dt

+
1

6

1

n=0

e�n!

1

�1

sin�t

�

4
3!2

(t� n)2
dt

�
1

6

1

�1

sin�t

�

4
R0(!)

t2
dt (103)

=
1

1� e�!

1

�1

sin�t

�t

4

dt

+
1

6�2
3!2

1� e�!
�R0(!)

1

�1

sin4 �t

(�t)2
dt (104)

<1: (105)

Next, we prove for m!(t). From (83), (95), for ! � !0

e�!t �
1

1� e�!

sin�t

�t

4

� m!(t) � e�!t; t � 0 (106)

and from (83), (89),

�
1

1� e�!

sin�t

�t

4

� m!(t) � 0; t < 0 (107)

so, m!(t) is a minorant for E!(t) and is of type 4�. Since

1

�1

m!(t)dt

=
1

�1

M!(t)dt�
1

1� e�!

1

�1

sin�t

�t

4

dt

=
1

6�2
3!2

1� e�!
�R0(!)

1

�1

sin4 �t

(�t)2
dt

from Lemma 2 for ! � !0

1

�1

m!(t)dt > 0: (108)
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B. Extension of Graham–Vaaler’s Theorem

Substituting t! ��

!
t into E!(t) defined by (14), we have

E! �
�0
!
t = E� (t): (109)

Define � = 2�=! and

M�;� (t) = M! �
�0
!
t ; t 2 ; ! > 0 (110)

m�;� (t) = m! �
�0
!
t ; t 2 ; ! > 0 (111)

then both M�;� (t) andm�;� (t) are of type�2�0�. From Lemma 5,
for sufficiently small � > 0;M�;� (t) and m�;� (t) are majorant and
minorant for E� (t), respectively.

Based on Lemma 5, we can calculate

1

�1

M�;� (t)dt

= �
!

��0(1� e�!)

1

�1

sin t

t

4

dt

�
!

6�0�3
3!2

1� e�!
�R0(!)

1

�1

sin4 t

t2
dt (112)

<1 (113)
1

�1

m�;� (t)dt

= �
!

6�0�3
3!2

1� e�!
�R0(!)

1

�1

sin4 t

t2
dt (114)

> 0: (115)

We have the following theorem. The proof is an extension of the
proof of Graham–Vaaler’s Tauberian theorem to the case that the pole
is of order 2.

Theorem 5: Let X be a nonnegative random variable and '(s) be
the Laplace-Stieltjes transform of the probability distribution function
F (x) of X . The abscissa of convergence of '(s) is denoted by �0 and
�1 < �0 < 0 is assumed. Let s = �0 be a pole of '(s) of order
2 and '(s) be analytic on the interval fs = �0 + i� j 2�0� < � <

�2�0�g for some � > 0 except s = �0. Write A2 as the coefficient of
(s��0)

�2 in the Laurent expansion of '(s) at s = �0. Then, we have

A2

1

�1

m�;� (t)dt

� lim inf
x!1

x�1e�� xP (X > x)

� lim sup
x!1

x�1e�� xP (X > x)

� A2

1

�1

M�;� (t)dt:

Proof: For the evaluation of P (X > x) =
1

x
dF (t), we first

evaluate the following integral. For � > �0, we have

e�� x
1

x

e�(��� )tdF (t)

=
1

x

e� (t�x)e��tdF (t)

=
1

0

E� (t� x)e��tdF (t)

�
1

0

M�;� (t� x)e��tdF (t) (116)

if F (t) is continuous at x. If x is a point of discontinuity of F (t), then
the integral in (116) does not exist. Since F (t) is right continuous,
the set of points of discontinuity is at most countable. We see that
the integral 1

0
M�;� (t � x)e��tdF (t) is continuous with respect

to x 2 because M�;� (t) is bounded. 1

x
e�(��� )tdF (t)

is monotonic decreasing in x. That is, a decreasing function
1

x
e�(��� )tdF (t) is bounded above by a continuous function

e� x 1

0
M�;� (t�x)e��tdF (t) outside a countable set of x, hence,

so is for all x 2 . Therefore

e�� x
1

x

e�(��� )tdF (t) �
1

0

M�;� (t�x)e��tdF (t) (117)

holds for all x 2 .
Since M�;� is of type�2�0�, Paley-Wiener’s theorem [15] shows

that the support of its Fourier transform M̂�;� is contained in the in-
terval [2�0�;�2�0�]. Writing � = �2�0�, we have by the inverse
Fourier transform

M�;� (t) =
1

2�

�

��

M̂�;� (�)eit�d� (118)

and by substituting t ! t � x; � ! ��;

M�;� (t� x) =
1

2�

�

��

M̂�;� (��)e�i(t�x)�d�: (119)

Then we have by Fubini’s theorem

1

x

1

0

M�;� (t� x)e��tdF (t)

=
1

2�x

�

��

M̂�;� (��)eix�d�
1

0

e�(�+i�)tdF (t) (120)

=
1

2�x

�

��

M̂�;� (��)'(� + i� )eix�d�: (121)

Since s = �0 is supposed to be a pole of order 2, the principal part
'0(s) of '(s) at s = �0 is given as

'0(s) =

2

j=1

Aj

(s� �0)j
; A2 6= 0: (122)

The inverse Laplace transform of '0(s) is

2

j=1

Ajt
j�1e� t; t � 0 (123)

then, in a similar way as (121), we have

1

x

1

0

M�;� (t� x)e��t
2

j=1

Ajt
j�1e� tdt

=
1

2�x

�

��

M̂�;� (��)

2

j=1

Aj

(� + i� � �0)j
eix�d�: (124)
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We write �(s) = '(s)�'0(s), then �(s) is analytic in a neighborhood
of s = �0. By subtracting (124) from (121)

1

x

1

0

M�;� (t� x)e��tdF (t)

=

2

j=1

Aj

x

1

0

M�;� (t� x)tj�1e�(��� )t
dt

+
1

2�x

�

��

M̂�;� (�� )�(� + i� )eix�d�: (125)

Then from (117), (125) we have

1

x
e
�� x

1

x

e
�(��� )t

dF (t)

�

2

j=1

Aj

x

1

0

M�;� (t� x)tj�1e�(��� )t
dt

+
1

2�x

�

��

M̂�;� (��)�(� + i� )eix�d�: (126)

By taking ! > 0 sufficiently large, or equivalently, taking � > 0

sufficiently small, �(� + i� ) ! �(�0 + i� ) as � # �0 uniformly in
� 2 [��;�] with � = �2�0�. Hence by the dominating convergence
theorem, we have

1

x
e
�� x

P (X > x) �

2

j=1

Aj

x

1

0

M�;� (t� x)tj�1dt

+
1

2�x

�

��

M̂�;� (��)�(�0 + i� )eix�d�:

(127)

When x tends to infinity, the first term of the right-hand side of (127)
becomes

lim
x!1

2

j=1

Aj

x

1

0

M�;� (t� x)tj�1dt = A2

1

�1

M�;� (t)dt

(128)

while the second term tends to 0 by the Riemann–Lebesgue theorem.
Hence from (127) we have

lim sup
x!1

1

x
e
�� x

P (X > x) � A2

1

�1

M�;� (t)dt <1:

In a similar way, we have for minorant m!(t)

lim inf
x!1

1

x
e
�� x

P (X > x) � A2

1

�1

m�;� (t)dt > 0:

Proof of Theorem 3: From Theorem 5, writing C1 =

A2
1

�1
m�;� (t)dt > 0; C2 = A2

1

�1
M�;� (t)dt > 0, we

see that for any � > 0 there exists x0 with

C1 � � < x
�1
e
�� x

P (X > x) < C2 + �; 8x � x0: (129)

By taking logarithm of each side of (129), we have

lim
x!1

1

x
logP (X > x) = �0:

We immediately obtain the following corollary of Theorem 3.

Corollary 1: Let X be a random variable taking nonnegative inte-
gral values, and f(z) = 1

n=0 P (X = n)zn the probability gener-
ating function of X . The radius of convergence of f(z) is denoted by
r and 1 < r <1 is assumed. If z = r is a pole of f(z), then the tail
probability P (X > n) decays exponentially.

VI. LEMMAS AND THEOREMS FOR A POLE OF ARBITRARY ORDER

In the last section, we proved lemmas and theorems for a pole of
order 2. We here provide the statement of lemmas and theorems for a
pole of arbitrary order, corresponding to each lemma and theorem in
the last section.

Let D be the order of the pole s = �0 of the Laplace–Stieltjes trans-
form '(s). First, define

K =
D; if D is odd
D + 1; if D is even

(130)

so, K is always odd. Then, define

R(v) =
vK

1� e�v
; v 2 (131)

r(v) = v
K
; v 2 (132)

~R!(v) = R(v + !)�

K�1

k=0

R(k)(!)

k!
v
k

! > 0; v 2 (133)

where R(k) denotes the kth derivative of R.
We show below Lemmas 1�–5� and Theorem 5� corresponding to

Lemmas 1–5 and Theorem 5 in the last section, respectively.

Lemma 1�: There exists !0 > 0 such that for any ! � !0

~R!(v) � 0; v � 0
~R!(v) � 0; v < 0:

(134)

Lemma 2�: For sufficiently large v > 0

R
(k)(v) <

r(k)(v)

1� e�v
; k = 1; 3; . . . ; K: (135)

Lemma 3�: There exists !0 > 0 such that for any ! � !0

~R!(v) �
1

1� e�!
v
K
; v � 0: (136)

Lemma 4�: There exists !0 > 0 such that for any ! � !0

�
0

�1

~R!(v)e
tv
dv <

R(K)(!)

tK+1
; t > 0: (137)

Define two functions M!(t) and m!(t) as follows:

M!(t) =
1

K!

sin�t

�

K+1

Q!(t); �1 < t <1 (138)
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Q!(t) =

1

n=0

e�n!
K+1

k=1

(�1)kr(k�1)(!)

(t� n)k

+

K

k=1

(�1)k�1R(k�1)(!)

tk
(139)

m!(t) = M!(t)�
1

1� e�!
sin�t

�t

K+1

; �1 < t <1:

(140)

Lemma 5�: There exists !0 > 0 such that for any ! � !0;M!(t)

is a majorant for E!(t) of type (K + 1)� and 1

�1
M!(t)dt < 1,

moreover, m!(t) is a minorant for E!(t) of type (K + 1)� and
1

�1
m!(t)dt > 0.

Let � = 2�=! and define

M�;� (t) = M! �
�0
!
t ; t 2 (141)

m�;� (t) = m! �
�0
!
t ; t 2 : (142)

Both M�;� (t) and m�;� (t) are of type�2�0�. By Lemma 5�, there
exists �0 > 0 such that for any � < �0;M�;� (t) is a majorant and
m�;� (t) is a minorant for E� (t), respectively.

We can calculate 1

�1
M�;� (t)dt and 1

�1
m�;� (t)dt as follows:

1

�1

M�;� (t)dt

= �
!

��0(1� e�!)

1

�1

sin t

t

K+1

dt

�
!

K!�0

K�1

k=2;k:even

1

�K+2�k

�
r(k�1)(!)

1� e�!
�R(k�1)(!)

1

�1

sinK+1 t

tk
dt (143)

<1 (144)
1

�1

m�;� (t)dt

= �
!

K!�0

K�1

k=2;k:even

1

�K+2�k

�
r(k�1)(!)

1� e�!
�R(k�1)(!)

1

�1

sinK+1 t

tk
dt (145)

> 0: (146)

Theorem 5�: Let X be a nonnegative random variable and '(s) be
the Laplace–Stieltjes transform of the probability distribution function
F (x) of X . The abscissa of convergence of '(s) is denoted by �0 and
�1 < �0 < 0 is assumed. Let s = �0 be a pole of '(s) of order
D and '(s) be analytic on the interval fs = �0 + i� j 2�0� < � <

�2�0�g for some � > 0 except s = �0. Write AD as the coefficient
of (s� �0)

�D in the Laurent expansion of '(s) at s = �0. Then, we
have

AD
1

�1

m�;� (t)dt � lim inf
x!1

x�D+1e�� xP (X > x)

� lim sup
x!1

x�D+1e�� xP (X > x)

� AD
1

�1

M�;� (t)dt:

VII. CONCLUSION

We investigated a sufficient condition for the exponential decay of
the tail probability P (X > x) of a nonnegative random variable X .
For the Laplace-Stieltjes transform '(s) of the probability distribution
function of X with abscissa of convergence �0;�1 < �0 < 0, we
showed that if s = �0 is a pole of '(s) then the tail probability de-
cays exponentially. If '(s) is given explicitly, then this sufficient con-
dition is easy to check. For the proof of our main theorem, we extended
Graham–Vaaler’s Tauberian theorem to the case that the order of the
pole of '(s) is arbitrary. Now, I have proved the conjecture that was
written in [11].
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