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TAIL PROBABILITY AND SINGULARITY OF LAPLACE-STIELTJES

TRANSFORM OF A PARETO TYPE RANDOM VARIABLE
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Abstract. We give a sufficient condition for a non-negative random variable X to be of
Pareto type by investigating the Laplace-Stieltjes transform of the cumulative distribution
function. We focus on the relation between the singularity at the real point of the axis of
convergence and the asymptotic decay of the tail probability. For the proof of our theorems,
we apply Graham-Vaaler’s complex Tauberian theorem. As an application of our theorems,
we consider the asymptotic decay of the stationary distribution of an M/G/1 type Markov
chain.
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1. Introduction

We consider the asymptotic decay of the tail probability P (X > x) of a Pareto

type random variable X . A random variable X is said to be of Pareto type with

decay exponent r > 0 if

(1.1)
C′

xr
6 P (X > x) 6

C

xr

holds for all sufficiently large x, where C and C′ are positive constants.

Denote by F (x) the cumulative distribution function of X , i.e., F (x) = P (X 6 x).

For example, let X follow a Pareto distribution such that F (x) = 1 − 1/x, x > 1,

then P (X > x) = 1/x, so X is of Pareto type with decay exponent r = 1. Pareto

distribution is naturally of Pareto type.

In this paper, we will give a sufficient condition forX to be of Pareto type based on

analytic properties of the Laplace-Stieltjes (LS) transform of F (x). The LS transform
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of F (x) is defined by

(1.2) ϕ(s) =

∫
∞

0

e−sx dF (x).

In general, for a function R(x), which is of bounded variation in the interval

0 6 x 6 c for any positive c, the LS transform Ψ(s) =
∫
∞

0 e−sx dR(x), s = σ + iτ , is

defined. If Ψ(s) converges for σ > σ0 and diverges for σ < σ0, then σ0 is said to be the

abscissa of convergence of Ψ(s). The line ℜs = σ0 is called the axis of convergence,

where ℜs denotes the real part of s. In the case σ0 = 0, some local information

of Ψ(s) at s = 0 may provide the asymptotic behavior of R(x) as x → ∞. Such
a proposition is called a Tauberian theorem. The following is one of the Tauberian

theorems.

Theorem (Widder [13], p. 192, Theorem 4.3). Let R(x) be a non-decreasing

function and let the abscissa of convergence of Ψ(s) be σ0 = 0. If for constants r 6 0

and A

(1.3) lim
s→0+

|Ψ(s)s−r −A| = 0,

then

(1.4) lim
x→∞

|R(x)Γ(r + 1)xr −A| = 0,

where Γ denotes the gamma function.

In [9], [10], [11] we studied the asymptotic decay of a light tailed random variable.

A random variable X is said to be light tailed if the tail probability P (X > x) decays

exponentially, i.e.,

(1.5) lim
x→∞

1

x
logP (X > x) < 0.

We obtained in [11] the following theorem which gives a sufficient condition for a light

tailed random variable.

Theorem (Nakagawa [11]). For a non-negative random variable X with cu-

mulative distribution function F (x), let ϕ(s) =
∫
∞

0
e−sx dF (x) be the Laplace-

Stieltjes transform of F (x) and σ0 the abscissa of convergence of ϕ(s). We assume

−∞ < σ0 < 0. If s = σ0 is a pole of ϕ(s), then we have

(1.6) lim
x→∞

1

x
logP (X > x) = σ0.
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It is known that for a monotonic R(x), s = σ0 is a singularity of Ψ(s) (see Wid-

der [13], p. 58, Theorem 5b). Since the cumulative distribution function F (x) is

monotonic increasing, s = σ0 is a singularity of ϕ(s). If F (x) is the cumulative

distribution function of a Pareto type random variable, then the abscissa of conver-

gence of ϕ(s) is necessarily σ0 = 0 (see Widder [13], p. 40, Theorem 2.2b). Since

ϕ(0) =
∫
∞

0
dF (x) = 1, s = 0 is not a pole, but another type of singularity.

In the research of the asymptotic decay of a tail probability, we would like to

construct a general theory such that a local analytic information on ϕ(s) at s = σ0

tells the asymptotic evaluation of the tail probability. In a light tailed case [9],

[10], [11] we applied to this problem Ikehara’s Tauberian theorem [6], [7] and its

extension Graham-Vaaler’s Tauberian theorem [5], [7]. Ikehara’s theorem assumes

a global analytic property of ϕ(s), that is, s = σ0 is a pole and there exist no other

singularities on the axis of convergence ℜs = σ0. On the other hand, Graham-

Vaarler’s theorem only assumes s = σ0 is a pole, which yields a weaker assertion

than Ikehara’s theorem, however, it is enough for our purpose to investigate the

asymptotic decay of a tail probability. In this paper, we will apply Graham-Vaaler’s

Tauberian theorem to the decay of a Pareto type random variable.

We will consider an application of our theorems to an M/G/1 type Markov chain [3]

to obtain a simple criterion for the stationary distribution to be of Pareto type; see

Chapter 7. In an M/G/1 type Markov chain, the probability generating function π(z)

of the stationary distribution π = (πn) is algebraically represented by the probability

generating functions of the rows of the state transition probability matrix [3]. There-

fore, we can obtain the stationary probabilities by the inverse z-transform of π(z),

however, the inverse transform is difficult in general. Because our purpose is to know

the asymptotic decay of the probabilities, we do not need to know the exact value

of πn. If we know the singularity of π(z), then we can apply our theorems to obtain

the asymptotic behavior of πn.

Throughout this paper, we will use the following symbols. N, N+, R, C, denote the

set of natural numbers, positive natural numbers, real numbers, complex numbers,

and further, ℜ, L, F denote the real part of a complex number, Laplace transform
and Fourier transform, respectively.

2. Examples of Pareto type random variables

Now, we look at some examples of Pareto type random variables and their LS

transforms.

2.1. Continuous random variable I. Let X follow a Pareto distribution with

cumulative distribution function F (x) = 1 − 1/x, x > 1. Then X is of Pareto
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type with decay exponent r = 1. The LS transform ϕ(s) of F (x) is represented in

a neighborhood of s = 0 as

(2.1) ϕ(s) =

∫
∞

1

e−sx dF (x) = s log s+ β(s),

where β(s) is analytic in a neighborhood of s = 0 (see Lemma 4.1).

2.2. Continuous random variable II. Let X follow a Pareto distribution with

cumulative distribution function F (x) = 1− 1/
√
x, x > 1. Then X is of Pareto type

with decay exponent r = 1/2 and

(2.2) ϕ(s) =
2π

Γ(1/2)

√
s+ β(s),

where β(s) is analytic in a neighborhood of s = 0 (see Lemma 4.2).

2.3. Discrete random variable. Let X be a discrete random variable with the

probability distribution p = (pn)n∈N,

(2.3) pn =
1

(n+ 1)r
− 1

(n+ 2)r
, n ∈ N, r ∈ N

+.

The tail probability of X is P (X > n) = 1/(n+ 2)r, so X is of Pareto type with

decay exponent r. The probability generating function p(z) of p is

(2.4) p(z) =
z − 1

z2

∞∑

n=1

zn

nr
+

1

z
.

Substituting z = e−s, we have

(2.5) ϕ(s) = p(e−s) = α(s)sr log s+ β(s),

where α(s) and β(s) are analytic in a neighborhood of s = 0 with α(0) 6= 0 (see

Lemma 4.3).
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3. Main theorems

The following are the main theorems in this paper.

Theorem 3.1. Let X be a non-negative random variable with cumulative dis-

tribution function F (x), and let ϕ(s) be the Laplace-Stieltjes transform of F (x).

Assume the abscissa of convergence of ϕ(s) is σ0 = 0, and ϕ(s) is represented in

a neighborhood of s = 0 as

(3.1) ϕ(s) = α(s)sr log s+ β(s), r ∈ N
+,

where α(s) and β(s) are analytic functions with α(0) 6= 0. Then X is of Pareto type

with decay exponent r, i.e., there exist constants C > 0, C′ > 0 such that

(3.2)
C′

xr
6 P (X > x) 6

C

xr

for all sufficiently large x.

Theorem 3.2. Under the same notation as in Theorem 3.1, assume σ0 = 0 and

ϕ(s) is represented in a neighborhood of s = 0 as

(3.3) ϕ(s) = α(s)sr + β(s), r > 0, r /∈ N,

where α(s) and β(s) are analytic functions with α(0) 6= 0. Then X is of Pareto type

with decay exponent r, i.e., there exist constants C > 0, C′ > 0 such that

(3.4)
C′

xr
6 P (X > x) 6

C

xr

for all sufficiently large x.

The following result is related to our theorems. Under the same notation as

in Theorem 3.1, assume σ0 = 0, and denote by µn the nth moment of X , i.e.,

µn = E(Xn), n ∈ N. For n ∈ N with µn < ∞, define

(3.5) ϕn(s) = (−1)n+1

{
ϕ(s)−

n∑

k=0

(−1)kµk

k!
sk
}
, s > 0,

and

(3.6) ϕ̃n(s) =
dnϕn(s)

dsn
= µn − (−1)nϕ(n)(s), s > 0,

where ϕ(n)(s) denotes the n-th derivative of ϕ(s).

For functions f1(x) and f2(x), we write f1(x) ∼ f2(x) as x → ∞ (or x → 0) when

limx→∞ (or x→0) f1(x)/f2(x) = 1.
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Theorem (Bingham, et al. [1], p. 716, Theorem A, see also [2], Theorem 8.1.6).

For n ∈ N with µn < ∞, let r = n+ ε, 0 6 ε 6 1, and let T (x) be a slowly varying

function (see [2]) as x → ∞. Then the following conditions are equivalent:

ϕn(s) ∼ srT (s−1), s → 0,(A)

ϕ̃n(s) ∼
Γ(r + 1)

Γ(ε+ 1)
sεT (s−1), s → 0,(B)

∫
∞

x

tn dF (t) ∼ n!T (x), x → ∞, if ε = 0,(C1)

1− F (x) ∼ (−1)n

Γ(1 − r)
x−rT (x), x → ∞, if 0 < ε < 1,(C2)

∫ x

0

tn+1 dF (t) ∼ (n+ 1)!T (x), x → ∞, if ε = 1.(C3)

If ε > 0, they are also equivalent to

(−1)n+1ϕ(n+1)(s) ∼ Γ(r + 1)

Γ(ε)
sε−1T (s−1), s → 0.

This theorem is based on the theory of regularly varying functions, especially

Karamata’s theory, see [2], [4], [7]. The theorem asserts the equivalence between the

limit of LS transform as s → 0 and that of the cumulative distribution function as

x → ∞, whereas our theorems give upper and lower estimates of P (X > x) for all

sufficiently large x. Particularly, in (C2), the authors consider the tail probability

P (X > x) = 1− F (x), but the estimation for P (X > x) in our theorems is stronger

than that in Bingham’s paper.

4. Preliminary lemmas

We will prepare some lemmas for the proof of our main theorems. First, let us

define the step function ∆(t) as

(4.1) ∆(t) =

{
1, if t > 1,

0, if t < 1.

Lemma 4.1. For r ∈ N
+, we have

(4.2) ϕ(s) ≡ L
( 1

tr+1
∆(t)

)
=

∫
∞

1

1

tr+1
e−st dt =

(−1)r+1

r!
sr log s+ β(s),

where β(s) is analytic in a neighborhood of s = 0.
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P r o o f. The (r + 1)-st derivative of ϕ(s) is

(4.3) ϕ(r+1)(s) = (−1)r+1

∫
∞

1

e−st dt = (−1)r+1
(1
s
+

e−s − 1

s

)
.

Since (e−s − 1)/s is analytic, we have, by successive integrations, the desired result.

�

Lemma 4.2. For r > 0, r /∈ N, let r0 = ⌊r⌋ be the maximum integer among
integers smaller than r, and let r̄ = r − r0. Then we have

(4.4) ϕ(s) ≡ L
( 1

tr+1
∆(t)

)
=

(−1)r0+1
π

Γ(r + 1) sin πr̄
sr + β(s),

where β(s) is analytic in a neighborhood of s = 0.

P r o o f. By a formula of Laplace transform (see [8], p. 287),

(4.5) ϕ(r0+1)(s) = (−1)r0+1

∫
∞

1

t−r̄e−st dt

= (−1)r0+1

{∫
∞

0

−
∫ 1

0

}
t−r̄e−st dt

= (−1)r0+1Γ(1− r̄)sr̄−1 + β̃(s),

where β̃(s) is analytic in a neighborhood of s = 0. By successive integrations,

(4.6) ϕ(s) = (−1)r0+1Γ(1− r̄)
1

r̄
· 1

r̄ + 1
· . . . · 1

r̄ + r0
sr̄+r0 + β(s)

=
(−1)r0+1

π

Γ(r + 1) sin πr̄
sr + β(s).

In (4.6), we applied the formulas Γ(z + 1) = zΓ(z) and Γ(z)Γ(1− z) = π/sin πz. �

Lemma 4.3. Let X be a discrete random variable with probability distribution

p = (pn)n∈N,

(4.7) pn =
1

(n+ 1)r
− 1

(n+ 2)r
, n ∈ N, r ∈ N

+,

and let p(z) =
∞∑

n=0
pnz

n be the probability generating function of p. Then ϕ(s) =

p(e−s) is represented in a neighborhood of s = 0 as

(4.8) ϕ(s) = α(s)sr log s+ β(s),

where α(s) and β(s) are analytic with α(0) 6= 0.
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P r o o f. For r > 2, by calculation and Riemann’s formula (see Widder [13],

p. 232),

(4.9) p(z) =
z − 1

z2

∞∑

n=1

zn

nr
+

1

z
=

1

(r − 1)!

z − 1

z2

∫
∞

0

ztr−1

et − z
dt+

1

z
.

Then,

(4.10) ϕ(s) =
es(1− es)

(r − 1)!

∫
∞

0

tr−1

et+s − 1
dt+ es.

By the change of variables u = et+s − 1, we have for sufficiently small s > 0

ϕ(s) =
es(1− es)

(r − 1)!

∫
∞

es−1

{log(1 + u)− s}r−1

u(u+ 1)
du+ analytic function

=
es(1− es)

(r − 1)!

∫

es−1

( 1

u
− 1

u+ 1

)
{(−s)r−1 + (r − 1)(−s)r−2u+ . . .} du

+ analytic function

=
es(1− es)

(r − 1)!
(−s)r−1

∫

es−1

1

u
du+ analytic function

= α(s)sr log s+ β(s),

where

(4.11) α(s) =
(−1)r+1

(r − 1)!
es
es − 1

s
, α(0) =

(−1)r+1

(r − 1)!
6= 0

and β(s) is an analytic function.

For r = 1, we have

(4.12) p(z) =
1− z

z2
log(1− z) +

1

z
.

A similar argument leads to the desired result. �

Lemma 4.4. For a cumulative distribution function F (x), let

(4.13) ϕ(s) =

∫
∞

0

e−sx dF (x)

have the abscissa of convergence σ0 = 0. If, in a neighborhood of s = 0,

(4.14) ϕ(s) = α(s)sr log s+ β(s), r ∈ N
+,
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where α(s), β(s) are analytic with α(0) 6= 0, then,

(4.15) α(0)

{
> 0, if r is odd,

< 0, if r is even.

P r o o f. From (4.13),

(4.16) ϕ(r)(0+)

{
6 0, if r is odd,

> 0, if r is even,

while from (4.14) by calculation

(4.17) ϕ(r)(s) = r!α(s) log s+ θ(s),

where θ(s) is a function of s with |θ(0+)| < ∞. Thus, by (4.17),

(4.18) ϕ(r)(0+) = r!α(0) × (−∞) + θ(0+).

Comparing (4.16), (4.18), we have the conclusion. �

Lemma 4.5. Under the same notation as in Lemmas 4.2, 4.4, if ϕ(s) has the

abscissa of convergence σ0 = 0 and

(4.19) ϕ(s) = α(s)sr + β(s), r > 0, r /∈ N,

with α(0) 6= 0, then

(4.20) α(0)

{
> 0, if r0 = ⌊r⌋ is odd,
< 0, if r0 is even.

P r o o f. From (4.13)

(4.21) ϕ(r0+1)(0+)

{
> 0, if r0 is odd,

6 0, if r0 is even,

while from (4.19)

(4.22) ϕ(r0+1)(s) =

r0+1∑

k=0

(
r0 + 1

k

)
α(r0+1−k)(s) · d

dsk
sr + β(r0+1)(s).
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Since

(4.23)
d

dsk
sr
∣∣∣
s=0+

=

{
0 for k = 0, 1, . . . , r0,

∞ for k = r0 + 1,

we have from (4.22)

(4.24) ϕ(r0+1)(0+) = α(0)× (+∞) + β(r0+1)(0).

Comparing (4.21), (4.24), we have the result. �

4.1. First several terms of α(s) and β(s). We will need later, in the proof of

the main theorems, to make Laplace transforms which have the same first several

terms as those in the Taylor expansion of α(s) and β(s), respectively.

First, consider the case of Theorem 3.1, i.e.,

(4.25) ϕ(s) = α(s)sr log s+ β(s), r ∈ N
+,

with expansions α(s) =
∞∑

n=0
αns

n, α(0) 6= 0, and β(s) =
∞∑
n=0

βns
n.

We will form functions g∗(t) and h∗(t) such that their Laplace transforms G∗(s) ≡
L(g∗(t)) and H∗(s) ≡ L(h∗(t)) satisfy the following (i) and (ii) for L ∈ N

+:

(i) G∗(s) = α∗(s)sr log s + β∗(s), where α∗(s) =
L−1∑
n=0

αns
n and β∗(s) is a function

analytic in a neighborhood of s = 0.

(ii) H∗(s) =
L−1∑
n=0

(βn − β∗

n)s
n+ higher order terms, where β∗

n is the coefficient of the

expansion of β∗(s) at s = 0, i.e., β∗(s) =
∞∑

n=0
β∗

ns
n.

The above (i) and (ii) mean that α∗(s) is equal to the sum of the first L terms of

α(s), and the sum of the first L terms of H∗(s) + β∗(s) is equal to that of β(s).

Define

g∗(t) =

L−1∑

k=0

g∗k
tr+k+1

∆(t), t ∈ R,(4.26)

g∗k = (−1)r+k+1(r + k)!αk, k = 0, 1, . . . , L− 1,(4.27)

where ∆(t) was defined in (4.1). By Lemma 4.1, we see that g∗(t) satisfies (i). The

first coefficient g∗0 is positive by Lemma 4.4, i.e.,

(4.28) g∗0 = (−1)r+1r!α0 > 0.

Therefore, we see that g∗(t) is positive for all sufficiently large t.
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Let hk(t) = ke−kt, t > 0, k = 1, 2, . . . , and Hk(s) = L(hk(t)). We have Hk(s) =

k/(s+ k), ℜs > −k, and the expansion

(4.29) Hk(s) =

∞∑

n=0

(
− s

k

)n

, |s| < k.

The sum of the first L terms of (4.29) is represented as

(4.30)

L−1∑

n=0

(
− s

k

)n

=
(
1,− 1

k
, . . . ,

(
− 1

k

)L−1)
(1, s, . . . , sL−1)T,

where T denotes the transposition of a vector. Let V be the L× L matrix

(4.31) V =




1 −1 . . . (−1)L−1

1 −1

2
. . .

(
−1

2

)L−1

...
...

...

1 − 1

L
. . .

(
− 1

L

)L−1




.

We will form an objective function h∗(t) by a linear combination of hk(t), k =

1, 2, . . . , L. Define h(t) =
L∑

k=1

dkhk(t), t > 0, and write d = (d1, d2, . . . , dL), s =

(1, s, . . . , sL−1), and further, β = (β0, β1, . . . , βL−1), β
∗ = (β∗

0 , β
∗

1 , . . . , β
∗

L−1). The

sum of the first L terms of H(s) ≡ L(h(t)) is dV sT. Then we solve the equation

(4.32) dV sT = (β − β∗)sT.

Since detV 6= 0 (Vandermonde matrix), we have d = (β − β∗)V −1. Writing this

solution as d = (d1, d2, . . . , dL), then

(4.33) h∗(t) =

L∑

k=1

dkhk(t)

is the desired function, i.e., H∗(s) = L(h∗(t)) satisfies (ii).

Summarizing the above, we get:
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Lemma 4.6. Let ϕ(s) be the LS transform of a cumulative distribution function

and let its abscissa of convergence be σ0 = 0. If

(4.34) ϕ(s) = α(s)sr log s+ β(s), r ∈ N
+,

where α(s), β(s) are analytic in a neighborhood of s = 0 with α(0) 6= 0, then g∗(t)

in (4.26) and h∗(t) in (4.33) satisfy (i) and (ii).

Similarly, in the case of Theorem 3.2, i.e.,

(4.35) ϕ(s) = α(s)sr + β(s), r > 0, r /∈ N,

with α(s) =
∞∑
n=0

αns
n, α0 6= 0, β(s) =

∞∑
n=0

βns
n, we will form functions g∗∗(t), h∗∗(t)

such that their Laplace transforms G∗∗(s), H∗∗(s) satisfy the following (i′) and (ii′)

for L ∈ N
+.

(i′) G∗∗(s) = α∗∗(s)sr + β∗∗(s), where α∗∗(s) =
L−1∑
n=0

αns
n and β∗∗(s) is some func-

tion analytic in a neighborhood of s = 0.

(ii′) H∗∗(s) =
L−1∑
n=0

(βn − β∗∗

n )sn+ higher order terms, where β∗∗

n is the coefficient of

the expansion of β∗∗(s) at s = 0, i.e., β∗∗(s) =
∞∑

n=0
β∗∗

n sn.

In this case, defining

g∗∗(t) =

L−1∑

k=0

g∗∗k
tr+k+1

∆(t), t ∈ R,(4.36)

g∗∗k = (−1)r0+k+1 sin πr̄

π

Γ(r + k + 1)αk, k = 0, 1, . . . , L− 1,(4.37)

we see that g∗∗(t) satisfies (i′). The first coefficient g∗∗0 is positive by Lemma 4.5,

i.e.,

g∗∗0 = (−1)r0+1 sin πr̄

π

Γ(r + 1)α0 > 0.

Let h∗∗(t) be a function which is formed similarly to h∗(t) in (4.33) by replacing β∗

n

by β∗∗

n . Then H∗∗(s) = L(h∗∗(t)) satisfies (ii′).
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Lemma 4.7. Let ϕ(s) be the LS transform of a cumulative distribution function

and let its abscissa of convergence be σ0 = 0. If

(4.38) ϕ(s) = α(s)sr + β(s), r > 0, r /∈ N,

then g∗∗(t) in (4.36) and h∗∗(t) above satisfy (i′) and (ii′).

4.2. Majorant and minorant functions. For the evaluation of the tail proba-

bility P (X > x) from above and from below, we need to use majorant and minorant

functions for an exponential function (see Korevaar [7], p. 132, Graham-Vaaler [5]).

If two functions f1, f2 satisfy f1(t) > f2(t), t ∈ R, then f1 is said to be a majorant

for f2, and f2 is a minorant for f1.

For ω > 0, we will define a majorant M1
ω(t) and a minorant m

1
ω(t) for

(4.39) Eω(t) ≡
{
e−ωt, t > 0,

0, t < 0.

Define (see Korevaar [7], p. 132)

M1
ω(t) =

( sin πt

π

)2
Qω(t), t ∈ R,(4.40)

Qω(t) =

∞∑

n=0

e−nω

(t− n)2
− ω

∞∑

n=1

e−nω
( 1

t− n
− 1

t

)
,(4.41)

and

(4.42) m1
ω(t) = M1

ω(t)−
( sin πt

πt

)2
, t ∈ R.

Moreover, for L ∈ N
+, define

(4.43) ML
ω (t) = (M1

ω(t))
L and mL

ω(t) = (m1
ω(t))

L.

For σ > 0, δ > 0, write ω = 2πσ/δ, and then define

ML
σ,δ(t) ≡ ML

ω

( δt

2π

)
= ML

2πσ/δ

( δt

2π

)
,(4.44)

mL
σ,δ(t) ≡ mL

ω

( δt

2π

)
= mL

2πσ/δ

( δt

2π

)
.(4.45)
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Lemma 4.8 (Korevaar [7]). For any L ∈ N
+, σ > 0, δ > 0, we have ML

σ,δ(t),

mL
σ,δ(t) ∈ L1(R) ∩ L2(R).

For λ > 0, an entire function f(z) of a complex variable z = x+iy is of exponential

type λ (see Korevaar [7], p. 128) if

(4.46) |f(z)| 6 C exp(λ|z|), z ∈ C, C > 0.

A real function f(x) is of type λ if f(x) is the restriction to R of an entire function

of exponential type λ.

Lemma 4.9 (Korevaar [7], Nakagawa [11]). For any L ∈ N
+, σ > 0, δ > 0,

ML
σ,δ(t) and mL

σ,δ(t) are of type Lδ.

Lemma 4.10 (Korevaar [7], Graham-Vaaler [5]). For δ > 0, L ∈ N
+,

(4.47) ELσ(t) 6 ML
σ,δ(t), t ∈ R,

and for odd L ∈ N
+,

(4.48) mL
σ,δ(t) 6 ELσ(t), t ∈ R.

P r o o f. If L = 1, the result follows from Korevaar [7], p. 129, Proposition 5.2.

The odd power preserves the order of real numbers, hence (4.48) holds. �

From Lemma 4.8, we can define the Fourier transforms M̂L
σ,δ = F(ML

σ,δ) and

m̂L
σ,δ = F(mL

σ,δ), where the Fourier transform is defined as

(4.49) M̂L
σ,δ(τ) =

∫
∞

−∞

ML
σ,δ(t)e

−iτt dt, τ ∈ R.

Then, from Lemma 4.9 and the Paley-Wiener theorem [7], [12], we have

Lemma 4.11 (Korevaar [7], Rudin [12]). For any L ∈ N
+,

(4.50) supp(M̂L
σ,δ) ⊂ [−Lδ, Lδ] and supp(m̂L

σ,δ) ⊂ [−Lδ, Lδ],

where supp denotes the support of a function.

4.3. Calculation of M̂L
σ,δ(τ) and m̂L

σ,δ(τ). For L = 1, it is not difficult to

calculate the Fourier transforms M̂1
ω = F(M1

ω) and m̂1
ω = F(m1

ω).
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Define

(4.51) q1(t) =
( sin πt

πt

)2
, q2(t) =

sin2 πt

πt
, t ∈ R,

and write q̂1 = F(q1), q̂2 = F(q2). By calculation, we have

(4.52) q̂1(τ) =





1 +
τ

2π

, −2π 6 τ < 0,

1− τ

2π

, 0 6 τ < 2π,

0, otherwise,

and

(4.53) q̂2(τ) =





i

2
, −2π 6 τ < 0,

− i

2
, 0 6 τ < 2π,

0, otherwise.

Lemma 4.12. We have

M̂1
ω(τ) =

1

1− e−(ω+iτ)
q̂1(τ) −

ω

π

( 1

1− e−(ω+iτ)
− 1

1− e−ω

)
q̂2(τ),

m̂1
ω(τ) =

e−(ω+iτ)

1− e−(ω+iτ)
q̂1(τ) −

ω

π

( 1

1− e−(ω+iτ)
− 1

1− e−ω

)
q̂2(τ).

P r o o f. See Appendix A. �

Next, we will calculate M̂L
ω = F(ML

ω ), m̂L
ω = F(mL

ω) and then calculate

lim
ω→0+

M̂L
ω (τ), lim

ω→0+
m̂L

ω(τ), for τ 6= 0.

Let us define

uω(t) =
( sin πt

πt

)2

− ω

π

sin2 πt

πt
(4.54)

= q1(t)−
ω

π

q2(t), t ∈ R,

vω(t) =
ω

π

sin2 πt

πt
(4.55)

=
ω

π

q2(t), t ∈ R,

and ûω = F(uω), v̂ω = F(vω).
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Lemma 4.13. We have

M̂L
ω (τ) =

1

(2π)L−1

L∑

l=0

(
L

l

)( 1

1− e−(ω+iτ)

)l( 1

1− e−ω

)L−l

û∗l
ω (τ) ∗ v̂∗L−l

ω (τ),

m̂L
ω(τ) =

1

(2π)L−1

L∑

l=0

(
L

l

)( e−(ω+iτ)

1− e−(ω+iτ)

)l( e−ω

1− e−ω

)L−l

û∗l
ω (τ) ∗ v̂∗L−l

ω (τ),

where ∗ denotes the convolution operator and ∗l denotes the l-fold convolutions.

P r o o f. See Appendix B. �

Lemma 4.14. For τ 6= 0, we have

lim
ω→0+

M̂L
ω (τ) =

1

(2π)L−1

L∑

l=0

1

π
L−l

(
L

l

)( 1

1− e−iτ

)l
q̂∗l1 (τ) ∗ q̂∗L−l

2 (τ),(4.56)

lim
ω→0+

m̂L
ω(τ) =

1

(2π)L−1

L∑

l=0

1

π
L−l

(
L

l

)( e−iτ

1− e−iτ

)l
q̂∗l1 (τ) ∗ q̂∗L−l

2 (τ).(4.57)

P r o o f. Equalities (4.56) and (4.57) follow from

û∗l
ω (τ) =

l∑

j=0

(
−ω

π

)l−j

q̂∗j1 (τ) ∗ q̂∗l−j
2 (τ), v̂∗L−l

ω (τ) =
(ω

π

)L−l

q̂∗L−l
2 (τ).

�

By the change of variables, we have

Lemma 4.15. For τ 6= 0,

lim
σ→0+

M̂L
σ,δ(τ) =

2π

δ

1

(2π)L−1

L∑

l=0

1

π
L−l

(
L

l

)( 1

1− e−i2πτ/δ

)l
q̂∗l1

(2πτ

δ

)
∗ q̂∗L−l

2

(2πτ

δ

)

=
1

τL
× (a bounded and piecewise C∞ function),

lim
σ→0+

m̂L
σ,δ(τ) =

2π

δ

1

(2π)L−1

L∑

l=0

1

π
L−l

(
L

l

)( e−i2πτ/δ

1− e−i2πτ/δ

)l
q̂∗l1

(2πτ

δ

)
∗ q̂∗L−l

2

(2πτ

δ

)

=
1

τL
× (a bounded and piecewise C∞ function).
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5. Proof of Theorem 3.1

5.1. Upper bound for P (X > x). First, we will estimate P (X > x) from above

by using the majorant function ML
σ,δ. Let

(5.1) L > r, L ∈ N
+.

For arbitrary σ1 > 0, σ2 > 0, δ > 0,

eLσ2x

∫
∞

x

e−(σ1+Lσ2)t dF (t) =

∫
∞

x

e−Lσ2(t−x)e−σ1t dF (t)(5.2)

=

∫
∞

0

ELσ2
(t− x)e−σ1t dF (t)

6

∫
∞

0

ML
σ2,δ(t− x)e−σ1t dF (t), x > 0,

where the last inequality holds by (4.47) in Lemma 4.10 (see also Korevaar [7],

Nakagawa [11]). By Lemma 4.11, ML
σ2,δ

(t− x) is represented by the inverse Fourier

transform of M̂L
σ2,δ

= F(ML
σ2,δ

) as

(5.3) ML
σ2,δ(t− x) =

1

2π

∫ Lδ

−Lδ

M̂L
σ2,δ(−τ)ei(x−t)τ dτ.

Substituting (5.3) into (5.2), we have by Fubini’s theorem

(5.4)

∫
∞

0

ML
σ2,δ(t− x)e−σ1t dF (t) =

∫
∞

0

1

2π

∫ Lδ

−Lδ

M̂L
σ2,δ(−τ)ei(x−t)τe−σ1t dτ dF (t)

=
1

2π

∫ Lδ

−Lδ

M̂L
σ2,δ(−τ)eixτ dτ

∫
∞

0

e−(σ1+iτ)t dF (t)

=
1

2π

∫ Lδ

−Lδ

M̂L
σ2,δ(−τ)eixτϕ(σ1 + iτ) dτ.

Now, let us consider the representation (3.1) of ϕ(s), i.e.,

(5.5) ϕ(s) = α(s)sr log s+ β(s), r ∈ N
+.

Similarly to the proofs of various complex Tauberian theorems [5], [6], [7], [10], [11],

the main idea for the proof of our Theorem 3.1 is to subtract the singular part from

the LS transform ϕ(s). If the singularity is a pole, then the singular part, i.e., the

principal part of the pole is a finite sum of rational functions. Thus, the inverse

Laplace transform of the singular part exists and it is a finite sum of functions.
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Contrary to the case of a pole, in this paper, the singular part of ϕ(s) is α(s)sr log s,

which is represented by an infinite series, in general. If we try to make the Laplace

inverse of α(s)sr log s by force, we have

(5.6) L−1(α(s)sr log s) =

∞∑

k=0

(−1)r+k+1(r + k)!αk

tr+k+1
∆(t) + some function;

however, the first term on the right-hand side of (5.6) is a divergent series, i.e., the

radius of convergence is 0, in general. So, we cannot directly apply the technique

used in [5], [6], [7], [10], [11] to our theorems. Then, instead of the infinite series in

(5.6), we subtract the Laplace transform of a finite series

(5.7) g∗(t) =

L−1∑

k=0

(−1)r+k+1(r + k)!αk

tr+k+1
∆(t)

from ϕ(s) to weaken the singularity of ϕ(s), where g∗(t) is previously defined in

(4.26) and L is an integer that satisfies (5.1).

We define

(5.8) f∗(t) = g∗(t) + h∗(t), t > 0,

where g∗(t) and h∗(t) are given in Lemma 4.6. Let ϕ∗(s) = L(f∗(t)), then f∗(t) and

ϕ∗(s) have the following properties (a), (b), (c) and (c′):

(a) f∗(t) > 0 for all sufficiently large t.

This is because g∗(0) = g∗0 > 0 by (4.28).

Define ξ(s) ≡ ϕ(s) − ϕ∗(s), then by Lemma 4.6,

(5.9) ξ(s) = ϕ(s)− (G∗(s) +H∗(s))

= sL
{( ∞∑

n=0

αL+ns
n

)
sr log s+

∞∑

n=0

(βL+n − β∗

L+n)s
n

}
, s = σ + iτ.

We have, from (5.9),

(b) ξ(s) is continuous in the closed region {0 6 σ 6 ε, −Lδ 6 τ 6 Lδ} ⊂ C for

sufficiently small ε, δ > 0.

In fact, because s = 0 is an isolated singularity, we can take ε, δ so small that the

closed region {0 6 σ 6 ε, −Lδ 6 τ 6 Lδ} does not include any singularities of ϕ(s)
and ϕ∗(s) other than s = 0.

Define M̂L
0,δ(τ) = lim

σ→0+
M̂L

σ,δ(τ), m̂
L
0,δ(τ) = lim

σ→0+
m̂L

σ,δ(τ), −Lδ 6 τ 6 Lδ, τ 6= 0,

for δ sufficiently small as in (b). Then we have
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(c) supp(M̂L
0,δ) ⊂ [−Lδ, Lδ], and M̂L

0,δ(τ)ξ(iτ) is piecewise C
∞ with (M̂L

0,δ(τ)ξ(iτ))
(r)

element of L1([−Lδ, Lδ]).

(c′) supp(m̂L
0,δ) ⊂ [−Lδ, Lδ], and m̂L

0,δ(τ)ξ(iτ) is piecewise C
∞ with (m̂L

0,δ(τ)ξ(iτ))
(r)

element of L1([−Lδ, Lδ]).

Here, (r) denotes the r-th derivative. The items (c) and (c′) follow from Lemma 4.15

and (5.9).

Now, defining F ∗(t) by dF ∗(t) = f∗(t) dt, we have in a way similar to (5.4)

(5.10)

∫
∞

0

ML
σ2,δ(t− x)e−σ1t dF ∗(t) =

1

2π

∫ Lδ

−Lδ

M̂L
σ2,δ(−τ)eixτϕ∗(σ1 + iτ) dτ.

Subtracting (5.10) from (5.4), we have

(5.11)

∫
∞

0

ML
σ2,δ(t− x)e−σ1t dF (t)

=

∫
∞

0

ML
σ2,δ(t− x)e−σ1t dF ∗(t) +

1

2π

∫ Lδ

−Lδ

M̂L
σ2,δ(−τ)eixτξ(σ1 + iτ) dτ.

For sufficiently small δ > 0,

(5.12) ξ(iτ) = lim
σ1→0+

ξ(σ1 + iτ), −Lδ 6 τ 6 Lδ,

is uniform convergence due to (b), hence,

(5.13) lim
σ1→0+

1

2π

∫ Lδ

−Lδ

M̂L
σ2,δ(−τ)ξ(σ1+iτ)eixτ dτ =

1

2π

∫ Lδ

−Lδ

M̂L
σ2,δ(−τ)ξ(iτ)eixτ dτ.

From (5.2), (5.11), (5.13), for σ1 → 0+ we have

(5.14) eLσ2x

∫
∞

x

e−Lσ2t dF (t)

6

∫
∞

0

ML
σ2,δ(t− x) dF ∗(t) +

1

2π

∫ Lδ

−Lδ

M̂L
σ2,δ(−τ)ξ(iτ)eixτ dτ.

By the estimation for M1
ω(t) (see Korevaar [7], p. 132), i.e.,

(5.15)





0 6 M1
ω(t) 6

( sin πt

πt

)2
, t < 0,

e−ωt 6 M1
ω(t) 6 e−ωt +

( sin πt

πt

)2
, t > 0,
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we have

(5.16)





0 6 ML
σ,δ(t) 6

( sin δt/2
δt/2

)2L
, t < 0,

e−Lωt 6 ML
σ,δ(t) 6

(
e−ωt +

( sin πt

πt

)2)L
, t > 0,

where ω = 2πσ/δ. Thus, it is easy to see that there exists a constant C1 > 0 such

that

(5.17) ML
σ,δ(t− x) 6





( 1

δ(x− t)/2

)2L
, 0 6 t < x− 1,

C1, t > x− 1.

Therefore, the first term on the right-hand side of (5.14) is evaluated as

(5.18)

∫
∞

0

ML
σ2,δ(t− x) dF ∗(t)

=

∫
∞

0

ML
σ2,δ(t− x)f∗(t) dt

=

∫
∞

0

ML
σ2,δ(t− x)(g∗(t) + h∗(t)) dt

6

L−1∑

k=0

|g∗k|
∫ x−1

1

( 1

δ(x− t)/2

)2L 1

tr+k+1
dt+ C1

L−1∑

k=0

|g∗k|
∫

∞

x−1

1

tr+k+1
dt

+

L∑

k=1

k|dk|
∫ x−1

0

( 1

δ(x− t)/2

)2L
e−kt dt+ C1

L∑

k=1

k|dk|
∫

∞

x−1

e−kt dt

6 O(x−(r+1)) + C2g
∗

0x
−r +O(x−2L) +O(e−x), C2 > 0

<
C3

xr
, C3 > 0,

for all sufficiently large x, by virtue of Lemmas Appendix C.1, Appendix C.2 in

Appendix C. Note that g∗0 > 0 and L > r.

Next, the second term on the right-hand side of (5.14) will be estimated. We have

by (c) and integration by parts,

(5.19) lim
σ2→0+

1

2π

∫ Lδ

−Lδ

M̂L
σ2,δ(−τ)ξ(iτ)eixτ dτ =

1

2π

∫ Lδ

−Lδ

M̂L
0,δ(−τ)ξ(iτ)eixτ dτ

=
ir

2πxr

∫ Lδ

−Lδ

(M̂L
0,δ(−τ)ξ(iτ))(r)eixτ dτ

= o(x−r), x → ∞,
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due to the Riemann-Lebesgue theorem. Then in (5.14) for σ2 → 0+, we have by

(5.18) and (5.19),

(5.20) P (X > x) =

∫
∞

x

dF (t) <
C

xr
, C > 0,

for all sufficiently large x.

5.2. Lower bound for P (X > x). We will estimate P (X > x) from below by

using the minorant function mL
σ,δ. Let L ∈ N

+ be an odd number with L > r. For

arbitrary σ1 > 0, σ2 > 0, δ > 0,

(5.21) eLσ2x

∫
∞

x

e−(σ1+Lσ2)t dF (t) =

∫
∞

0

ELσ2
(t− x)e−σ1t dF (t)

>

∫
∞

0

mL
σ2,δ(t− x)e−σ1t dF (t), x > 0.

In a way similar to that from (5.2) to (5.14), we have

(5.22) eLσ2x

∫
∞

x

e−Lσ2t dF (t)

>

∫
∞

0

mL
σ2,δ(t− x) dF ∗(t) +

1

2π

∫ Lδ

−Lδ

m̂L
σ2,δ(−τ)ξ(iτ)eixτ dτ.

By the estimation for m1
ω(t) (see Korevaar [7], p. 132), i.e.,

(5.23)





−
(sin πt

πt

)2
6 m1

ω(t) 6 0, t < 0,

e−ωt −
( sin πt

πt

)2
6 m1

ω(t) 6 e−ωt, t > 0,

we have

(5.24)





−
(sin δt/2

δt/2

)2L
6 mL

σ,δ(t) 6 0, t < 0,

(
e−ωt −

( sin δt/2
δt/2

)2)L
6 mL

σ,δ(t) 6 e−Lωt, t > 0,

where ω = 2πσ/δ. Thus, there exist constants C4, C5, C6 > 0 such that

mL
σ,δ(t− x) >





−
( 1

δ(x− t)/2

)2L
, 0 6 t < x− 1,

−C4, x− 1 6 t < x+ 1,

C5e
−(2πLσ/δ)(t−x) − C6

( 1

δ(x − t)/2

)2
, t > x+ 1.
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Therefore, the first term on the right-hand side of (5.22) is estimated as

∫
∞

0

mL
σ2,δ(t− x)(g∗(t) + h∗(t)) dt

> −
L−1∑

k=0

|g∗k|
∫ x−1

1

( 1

δ(x− t)/2

)2L 1

tr+k+1
dt− C4

L−1∑

k=0

|g∗k|
∫ x+1

x−1

1

tr+k+1
dt

+ C5

L−1∑

k=0

|g∗k|
∫

∞

x+1

e−(2πLσ2/δ)(t−x) 1

tr+k+1
dt

− C6

L−1∑

k=0

|g∗k|
∫

∞

x+1

( 1

δ(x− t)/2

)2 1

tr+k+1
dt

−
L∑

k=1

k|dk|
∫ x−1

0

( 1

δ(x− t)/2

)2L
e−kt dt− C4

L∑

k=1

k|dk|
∫ x+1

x−1

e−kt dt

+ C5

L∑

k=1

k|dk|
∫

∞

x+1

e−(2πLσ/δ)(t−x)e−kt dt

− C6

L∑

k=1

k|dk|
∫

∞

x+1

( 1

δ(x− t)/2

)2
e−kt dt

> O(x−(r+1)) +O(x−(r+1)) + C′

5g
∗

0

∫
∞

x+1

e−(2πLσ2/δ)(t−x) 1

tr+1
dt

+O(x−(r+1)) +O(x−2L) +O(e−x) +O(e−x) +O(e−x),

where C′

5 is a positive constant. Thus, we have, from g∗0 > 0,

(5.25) lim
σ2→0+

∫
∞

0

mL
σ2,δ(t− x) dF ∗(t) >

C7

xr
, C7 > 0,

for all sufficiently large x.

Next, we will evaluate the second term in the right-hand side of (5.22). We have,

by (c′) and the integration by parts,

(5.26) lim
σ2→0+

1

2π

∫ Lδ

−Lδ

m̂L
σ2,δ(−τ)ξ(iτ)eixτ dτ =

1

2π

∫ Lδ

−Lδ

m̂L
0,δ(−τ)ξ(iτ)eixτ dτ

=
ir

2πxr

∫ Lδ

−Lδ

(m̂L
0,δ(−τ)ξ(iτ))(r)eixτ dτ

= o(x−r), x → ∞,
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due to the Riemann-Lebesgue theorem. Then, using (5.22) for σ2 → 0+, we have

from (5.25) and (5.26),

(5.27) P (X > x) =

∫
∞

x

dF (t) >
C′

xr
, C′ > 0,

for all sufficiently large x.

By (5.20) and (5.27), the proof of Theorem 3.1 is completed. �

6. Proof of Theorem 3.2

The same proof as that of Theorem 3.1 is applicable to Theorem 3.2 by replacing

g∗(t), h∗(t) in Lemma 4.6 with g∗∗(t), h∗∗(t) in Lemma 4.7. �

7. Application to the stationary distribution of M/G/1 type

Markov chain

We will apply our theorems to the tail probability of the stationary distribution

of an M/G/1 type Markov chain [3].

Let us consider an irreducible and positive recurrent M/G/1 type Markov chain

with the state transition probability matrix

(7.1) P =




b0 b1 b2 b3 . . .

a0 a1 a2 a3 . . .

0 a0 a1 a2 . . .

0 0 a0 a1 . . .
...
...
...
...
. . .




,

where A ≡ (an)n∈N, B ≡ (bn)n∈N are probability vectors. Let us denote by XA,

XB the random variables with probability distribution A, B, respectively, that is,

P (XA = n) = an, P (XB = n) = bn, n ∈ N. Denote by A(z), B(z) the probability

generating functions ofXA, XB, respectively, i.e., A(z) =
∞∑
n=0

anz
n, B(z) =

∞∑
n=0

bnz
n,

and then define ϕA(s) = A(e−s), ϕB(s) = B(e−s) by substituting z = e−s. Further,

denote by E(XA), E(XB) the expectations of XA, XB, respectively, i.e., E(XA) =
∞∑
n=1

nan, E(XB) =
∞∑
n=1

nbn. It is known [3] that if P is positive recurrent, then

E(XA) < 1 and E(XB) < ∞.
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Denote by π = (πn)n∈N the stationary distribution of P , i.e., π = πP , and write its

probability generating function as π(z) =
∞∑
n=0

πnz
n. Then denote by Xπ the random

variable defined by P (Xπ = n) = πn, n ∈ N.

We have the following relation [3]:

(7.2) π(z) =
π0(zB(z)−A(z))

z −A(z)
.

Having a power series expansion of the right-hand side of (7.2), we can obtain πn,

however, in general, this is difficult or almost impossible. Our purpose is to know

the asymptotic decay of the tail probability P (Xπ > n), so we do not need to obtain

the exact value of πn.

Now, we apply our theorems to this problem. We assume the following conditions

(I), (II), (III).

(I) XB is of Pareto type and ϕB(s) has a singularity of the form as in Theorem 3.1:

(7.3) ϕB(s) = α(s)sr log s+ β(s),

where r ∈ N, r > 2 and α(s), β(s) are analytic in a neighborhood of s = 0 with

α(0) 6= 0, or of the form as in Theorem 3.2:

(7.4) ϕB(s) = α(s)sr + β(s),

where r > 1, r /∈ N and α(s), β(s) are analytic in a neighborhood of s = 0 with

α(0) 6= 0.

(II) The radius of convergence rA of A(z) is greater than 1, i.e., rA > 1.

(III) z = 1 is a simple zero of z − A(z), i.e., we have z − A(z) = (z − 1)u(z) with

u(1) 6= 0.

R em a r k 7.1. Due to (I), the abscissa of convergence σ0 of ϕB(s) is σ0 = 0, hence

by the correspondence z = e−s, the radius of convergence rB of B(z) is rB = 1.

R em a r k 7.2. One example of (7.3) is given in (2.3). In (2.3), if r > 2, r ∈ N,

then the expectation satisfies E(XB) < ∞.

Under the assumptions (I), (II), (III), let us first consider the case (7.3). From (7.2)

and (III), we have

ϕπ(s) = π0
e−sϕB(s)− ϕA(s)

(e−s − 1)u(e−s)
(7.5)

= α̃(s)sr−1 log s+ β̃(s),
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where

(7.6) α̃(s) = π0
se−sα(s)

(e−s − 1)u(e−s)
, β̃(s) = π0

e−sβ(s)− ϕA(s)

(e−s − 1)u(e−s)
.

Because α(0) 6= 0 and u(1) 6= 0, we see that α̃(s) is analytic in a neighborhood of

s = 0 with α̃(0) 6= 0. Furthermore, because β(0) = 1 and ϕA(0) = 1, we see that β̃(s)

is analytic in a neighborhood of s = 0. Therefore, we can apply our Theorem 3.1 to

see that the stationary distribution π of P is of Pareto type.

In a similar way, for (7.4) we have

(7.7) ϕπ(s) = α̃(s)sr−1 + β̃(s),

where α̃(s), β̃(s) are the same as in (7.6). Applying Theorem 3.2, we see also in this

case that π is of Pareto type.

8. Conclusion

In this paper we investigated the asymptotic decay of the tail probability of

a Pareto type random variable. We proved two theorems which give sufficient con-

ditions for a random variable to be of Pareto type. Our theorems are based on the

Tauberian theorems by Graham and Vaarler.

We applied our theorems to the tail probability of the stationary distribution π

of an M/G/1 type Markov chain. By investigating the singularity of the algebraic

representation of π(z) with A(z), B(z), we obtained a simple criterion whether π is

of Pareto type.

Appendix A. Proof of Lemma 4.12

We have from (4.51)

M̂1
ω(τ)

=
∞∑

n=0

e−nωF
(( sin π(t− n)

π(t− n)

)2)
− ω

π

∞∑

n=0

e−nω
{
F
( sin2 π(t− n)

π(t− n)

)
−F

(sin2 πt

πt

)}

= q̂1(τ)

∞∑

n=0

e−n(ω+iτ) − ω

π

q̂2(τ)

( ∞∑

n=0

e−n(ω+iτ) −
∞∑

n=0

e−nω

)

=
1

1− e−(ω+iτ)
q̂1(τ) −

ω

π

( 1

1− e−(ω+iτ)
− 1

1− e−ω

)
q̂2(τ).

The result for m̂1
ω is proved in a similar way. �
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Appendix B. Proof of Lemma 4.13

We have

ML
ω (t) =

(sin πt

πt

)2L
(Qω(t))

L

=
(sin πt

πt

)2L ∞∑

n1=0

. . .

∞∑

nL=0

e−n1ω . . . e−nLω
{ 1

(t− n1)2
− ω

t− n1
+

ω

t

}
× . . .

×
{ 1

(t− nL)2
− ω

t− nL
+

ω

t

}

=

∞∑

n1=0

. . .

∞∑

nL=0

e−n1ω . . . e−nLω
{( sin π(t− n1)

π(t− n1)

)2
− ω

π

sin2 π(t− n1)

π(t− n1)
+

ω

π

sin2 πt

πt

}
× . . .

×
{( sin π(t− nL)

π(t− nL)

)2
− ω

π

sin2 π(t− nL)

π(t− nL)
+

ω

π

sin2 πt

πt

}

=

∞∑

n1=0

. . .

∞∑

nL=0

e−n1ω . . . e−nLω{uω(t− n1) + vω(t)} × . . .× {uω(t− nL) + vω(t)}.

Therefore,

M̂L
ω (τ) =

∞∑

n1=0

. . .

∞∑

nL=0

e−n1ω . . . e−nLω 1

(2π)L−1
{e−in1τ ûω(τ) + v̂ω(τ)} ∗ . . .

∗ {e−inLτ ûω(τ) + v̂ω(τ)}

(Appendix B.1)

=
1

(2π)L−1

∞∑

n1=0

. . .

∞∑

nL=0

e−n1ω . . . e−nLω

×
L∑

l=0

{ ∑

k1,...,kl: distinct

(e−ink1
τ ûω(τ)) ∗ . . . ∗ (e−ink

l
τ ûω(τ))

}
∗ v̂∗L−l

ω (τ);

(Appendix B.2)

=
1

(2π)L−1

∞∑

n1=0

. . .

∞∑

nL=0

e−n1ω . . . e−nLω
L∑

l=0

( ∑

k1,...,kl: distinct

e−ink1
τ . . . e−ink

l
τ

)

× û∗l
ω (τ) ∗ v̂∗L−l

ω (τ);
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(Appendix B.3)

=
1

(2π)L−1

L∑

l=0

û∗l
ω (τ) ∗ v̂∗L−l

ω (τ)
∞∑

n1=0

. . .
∞∑

nL=0

e−n1ω . . . e−nLω

×
( ∑

k1,...,kl: distinct

e−ink1
τ . . . e−ink

l
τ

)

=
1

(2π)L−1

L∑

l=0

û∗l
ω (τ) ∗ v̂∗L−l

ω (τ)

(
L

l

)( 1

1− e−(ω+iτ)

)l( 1

1− e−ω

)L−l

=
1

(2π)L−1

L∑

l=0

(
L

l

)( 1

1− e−(ω+iτ)

)l( 1

1− e−ω

)L−l

û∗l
ω (τ) ∗ v̂∗L−l

ω (τ).

In (Appendix B.1), (Appendix B.2), (Appendix B.3), for l = 0, the (empty) sum on

k1, . . . , kl is considered to be 1.

Similarly, we have the result for m̂L
ω(τ). �

Appendix C. Auxiliary Lemmas

Lemma Appendix C.1. For n1, n2 ∈ N
+, n1 > 2, n2 > 2, let n = min(n1, n2).

Then ∫ x−1

1

dt

(x− t)n1tn2

6 O(x−n), x → ∞.

P r o o f. By the change of variables t = xu,

∫ x−1

1

dt

(x− t)n1tn2

=
1

xn1+n2+1

∫ 1−1/x

1/x

du

(1 − u)n1un2

=
1

xn1+n2+1

{∫ 1/2

1/x

+

∫ 1−1/x

1/2

}
du

(1 − u)n1un2

6
1

xn1+n2+1

{
2n1

∫ 1/2

1/x

du

un2

+ 2n2

∫ 1−1/x

1/2

du

(1− u)n1

}

=
1

xn1+n2+1

{
2n1

xn2−1 − 2n2−1

n2 − 1
+ 2n2

xn1−1 − 2n1−1

n1 − 1

}

= O(x−n), x → ∞.

�
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Lemma Appendix C.2. For k > 0 and n ∈ N, we have

∫ x−1

0

e−kt

(x− t)n
dt = O(x−n), x → ∞.

P r o o f. By the change of variables u = x− t,

∫ x−1

0

e−kt

(x− t)n
dt = e−kx

∫ x

1

eku

un
du

=
1

xn

∫ x

1

eku

un
du

/ekx

xn

→ 1

kxn
, x → ∞,

from L’Hopital’s rule. �
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