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Abstract

We have proposed the CoMPACT monitor; it achieves the scalable measurement of the one-
way delay distribution for each flow. CoMPACT monitor transforms the one-way delay data
obtained by active measurement by using the passively monitored traffic data of the target flow.
A recent study reported that using an inter-probe time with Gamma distribution can improve the
accuracy of simple active measurements. The improvement is in terms of the ensemble mean
of the stationary stochastic process. In this paper, to improve accuracy of CoMPACT monitor,
we apply Gamma-probing as the active measurement component of CoMPACT monitor. The
significant issue in this application is in the difference between objects targeted for measurement;
CoMPACT monitor estimates the time average of sample path rather than the ensemble mean.
We investigate the characteristics of CoMPACT monitor and Gamma-probing, and verify the
improved accuracy of CoMPACT monitor through simulations.

Keywords: QoS measurement, delay measurement, change-of-measure, Gamma distribution

1. Introduction

With the rapid growth of the Internet over the last few years, it has come to play an important
role as a key social infrastructure. Various applications provide new services including telephony
and live video on the Internet, and the traffic they stream exhibits complex characteristics. These
various applications require various quality of service (QoS) guarantees and so differ from tra-
ditional e-mail and web browsing applications. Given that even more unusual applications will
arise in the future, the diversification of QoS requirements can only strengthen.

In order to meet such the varied network control requirements, we need a measurement tech-
nology that can produce detailed QoS information. Measuring the QoS for each flow (e.g., users,
applications, or organizations) is important since it is a key parameter in service level agreements
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Figure 1: Two-point passive measurement

Figure 2: Active measurement

(SLAs) between the Internet service provider (ISP) and the user. One-way packet delay is one of
the most important QoS metrics. This paper focuses on the measurement of one-way delay for
each flow.

Many tools have been proposed to assess QoS including one-way delay ([1, 2]), and have also
been evaluated in previous studies ([3, 4, 5]). Conventional techniques of measuring network
performance and QoS can be classified as either passive or active measurements.

Passive measurement monitors the target user packet directly, by capturing the packets, in-
cluding the target information (see Fig. 1). Passive measurement is used to measure the volume
of traffic, one-way delay, round-trip time (RTT), loss, etc. It can get any desired information
about the traffic since it observes the actual traffic. Passive measurement can be categorized
into two-point monitoring with data-matching processes (to measure one-way delay etc.) and
one-point monitoring (to measure the volume of traffic etc.).

Passive measurement has the advantage of accuracy. However, if we perform passive mea-
surements in a large-scale network, the number of monitored packets is enormous, and network
resources are wasted by gathering the monitored data at the data center. Moreover, in order to
measure delay, it is necessary to determine the difference in arrival time of a particular packet
at different points in the network. This requires searching for the packet which was recorded in
the data monitored at one point from the data monitored at other point. This packet matching
process lacks scalability, so passive measurement lacks scalability.

Active measurement monitors QoS by injecting probe packets into a network path and mon-
itoring them (see Fig. 2 and [6, 7, 8, 9]). Active measurement can be used to measure one-way
delay, RTT, loss, available bandwidth [10], etc. It cannot obtain the per-flow QoS, but this is easy
for the end user to perform. Unfortunately, the QoS data obtained by active measurement does
not represent the QoS of the user packets, only QoS of the probe packets.

The authors previously described how the advantages of active and passive measurements
could be joined in their scalable measurement proposal called change-of-measure-based passive/active
monitoring (CoMPACT monitor); it offers per-flow QoS measurement ([11, 12, 13]).
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Figure 3: The transformation of QoS by CoMPACT monitor

Figure 4: The composition of CoMPACT monitor

The idea of CoMPACT monitor is as follows. The direct measurement of QoS of the target
flow by passive measurement is not really feasible due to the scalability problem. Instead, the
QoS of the target flow is gained by transforming QoS data obtained by active measurement.
The transformation reflects the passively monitored traffic data (volume of traffic) of the target
flow (see Fig. 3). We show the composition of CoMPACT monitor in Fig. 4. The problem of
scalability is well suppressed, because the volume of traffic can be measured by one-point passive
measurement without requiring data-matching processes.

We original assumed that Poisson arrivals (intervals follow an exponential distribution) would
be most appropriate for designing a policy of probe packet arrival since it permits the application
of PASTA (Poisson Arrivals See Time Averages) property [14]. In addition, we applied the
exponential distribution, as an inter-probe time distribution, in verifying CoMPACT monitor.

However, recent work [15] indicates that there maybe many distributions that are more accu-
rate than an exponential distribution if a non-intrusive context (ignoring the existence of probe
packets) can be assumed. Moreover, according to [16], we can find a distribution that is subopti-
mal in accuracy by setting the inter-probe time according to a parameterized Gamma distribution.

This paper confirms that applying Gamma-probing to CoMPACT monitor can improve its
accuracy in measuring the one-way delay distribution of individual flows. The significant issue
in this application lies in the difference between the objects targeted for measurement. In [16], the
process observed by probe packets is assumed to be stationary and ergodic stochastic. This means
that accuracy improvement is guaranteed only when the ensemble mean of a stationary stochastic
process is estimated. However, CoMPCT monitor estimates the time average of the sampled
path. Therefore, we should carefully investigate the characteristics of CoMPACT monitor with
Gamma-probing.

The rest of the paper is organized as follows. We describe the concept and mathematical for-
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mulation of CoMPACT monitor in section 2. Next, we briefly summarize the theory of Gamma-
probing for active measurement in section 3. Section 4 discusses the difference in objects targeted
between Gamma-probing and CoMPACT monitor. To confirm that the accuracy of CoMPACT
monitor can be improved by Gamma-probing, we execute some simulations in section 5 and
section 7. We conclude the paper in section 8.

2. Summary of CoMPACT monitor

2.1. The concept
CoMPACT monitor estimates an empirical QoS for the target flow by converting observed

values of network performance at timing of probe packet arrivals into a measure of the target
flow timing. Now, let v(t) denote the network process under observation (e.g. the virtual one-
way delay in the network path at time t), and Xk denote a random variable which is observed v(t)
with a certain timing (e.g. the timing of user k’s packet arrivals). The probability of Xk exceeding
c is

Pr(Xk > c) =
∫

1{x>c}dFk(x)

= EFk [1{x>c}]

where Fk(x) and 1{·} denote, respectively, the distribution function of Xk and the indicator func-
tion, and EFk denotes the expectation with respect to Fk.

If we can directly monitor Xk, its distribution can be estimated by

1
m

m∑

n=1

1{Xk(n)>c}, for sufficiently large m.

where Xk(n) (n = 1, 2, · · · ,m) denotes the nth observed value of Xk. Now, let us consider the
situation that Xk cannot be directly monitored (actually, we cannot directly monitor Xk by using
passive measurement in large-scale networks). Let Y denote a random variable which is observed
v(t) with a different timing (e.g. timing of probe packet arrivals), independent of Xk. This forces
us to consider the relationship between Xk and Y .

Observed values of Xk and Y are different if their timing is different, even if they observe a
common process v(t) (see Fig. 5). Xk and Y can be related by each distribution functions Fk(x)
and G(y), and Pr(Xk > c) expressed by measure of Xk can be transformed into measure of Y as
follows.

Pr(Xk > c) =
∫

1{x>c}dFk(x)

=

∫
1{y>c}

dFk(y)
dG(y)

dG(y)

= EG

[
1{Y>c}

dFk(Y)
dG(Y)

]

where EG denotes the expectation with respect to G.
Therefore, Pr(Xk > c) can be estimated by

1
m

m∑

n=1

1{Y(n)>c}
dFk(Y(n))
dG(Y(n))

, for sufficiently large m. (1)
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Figure 5: The relation between timing of arrivals and empirical QoS

where Y(n) (n = 1, 2, · · · ,m) denotes the nth observed value of Y . Note that this estimator does
not need to know Xk(n), if we can get dFk(Y(n))/dG(Y(n)). This means the QoS of a specific
flow (as decided by k) can be estimated by just one probe packet flow which arrives with timing
of Y .

2.2. Mathematical formulation
This subsection briefly summarizes the mathematical formulation of the CoMPACT monitor

with regard to one-way delay ([13]). We assume the traffic in the target flow can be treated as a
fluid. In other words, we assume the target flow packets outnumber the active probe packets.

Let a(t) and v(t) denote, respectively, the traffic in the target flow at time t (≥ 0) and the virtual
one-way delay on the path that we want to measure. a(t) and v(t) are nonnegative deterministic
processes assumed to be right-continuous with left limits and bounded on t ≥ 0. We can take a(t)
and v(t) as sample paths of the corresponding stochastic processes.

Considering the measurement of the empirical one-way delay distribution π(c), the value we
want to measure is the ratio of traffic whose delay exceeds c to all traffic of the target flow, which
is given by

π(c) = lim
t→∞

∫ t
0 1{v(s)>c}a(s)ds

∫ t
0 a(s)ds

. (2)

π(c) can be estimated by estimator Zm(c) as follows (see [13] for details).

Zm(c) =
1
m

m∑

n=1

1{v(Tn)>c}
a(Tn)

∑m
l=1 a(Tl)/m

(3)

=

m∑

n=1

1{v(Tn)>c}
a(Tn)

∑m
l=1 a(Tl)

for sufficiently large m, where Tn (n = 1, 2, · · · ,m) denotes the nth sampling time, and each
time of sampling corresponds to a time of probe packet arrival. Active and one-point passive
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measurement are used to observe v(Tn) and a(Tn), respectively. Note that measuring the volume
of traffic by one-point passive measurement is achieved much more easily than measuring the
one-way delay by two-point passive measurement.

If we extract quantity
∑m

n=1 1{v(Tn)>c}/m from equation (3), we can use it as a simple active
estimator that counts the packets whose delay exceeds c. However, equation (3) is weighted by
a(Tn)/(

∑m
l=1 a(Tl)/m), which is decided by the traffic in the target flow when probe packets arrive.

This means that the one-way delay distribution (measured by active measurement without bias) is
corrected to the empirical one-way delay distribution by the bias of the target flow (observed by
passive measurement). a(Tn)/(

∑m
l=1 a(Tl)/m) in equation (3) corresponds to dFk(Y(n))/dG(Y(n))

in equation (1).
Since the traffic is not really a fluid, we use the number of packets that are in the δ-neighborhood

of Tn [max{Tn − δ/2,Tn−1},min{Tn+1,Tn + δ/2}) instead of a(Tn), where δ is a predefined small
positive number ([13]).

3. Suboptimal probe intervals

3.1. NIMASTA
Since the PASTA property is good for non-biased measurement, Poisson arrivals (intervals

follow an exponential distribution) have been widely used as the design policy of probe packet
arrivals for active measurement. However, recent work [15] indicates that there may be many
other distributions that can estimate the true value if a non-intrusive context (the effect of probe
packets is ignored) can be assumed. This property was named NIMASTA (Non-Intrusive Mixing
Arrivals See Time Averages) in [15].

NIMASTA contains three assumptions. First, the stochastic process that expresses the net-
work state we are interested in (e.g. virtual delay) is stationary and ergodic. This process is
called the ground truth process in [16]. Second, the point process of probe packets arrivals
{Tn} (n = 1, 2, · · · ,m) is stationary and mixing. Mixing is the requirement to guarantee joint er-
godicity between the probe and ground truth processes (see [15] for details). The last assumption
is the non-intrusive context, i.e. we can ignore the impact of probe packets. Namely, the ratio of
the probe stream to all streams is very small.

Under the above assumptions, [15] proved that the following equation holds.

lim
m→∞

1
m

m∑

n=1

f (Y(Tn)) = lim
t→∞

1
t

∫ t

0
f (Y(t))dt

= E[ f (Y(0))] a.s., (4)

where f and Y(t) denote an arbitrary positive function and the ground truth process, respec-
tively. Equation (4) means that we can estimate the ensemble mean of the ground truth process
E[ f (Y(0))] by using any probe packet policy if the point process of probe packet arrival {Tn}
is mixing. An example of the mixing point process has processes whose intervals follow the
Gamma distribution and the uniform distribution. Note that periodic-probing with fixed intervals
is not a mixing process, and does not satisfy equation (4).

3.2. Setting probe intervals to decrease variance
A recent study [16] reported that NIMASTA-based probing offers improved measurement

accuracy. We can select a suboptimal (in terms of accuracy) probing process under a specific
assumption by using the inter-probe time given by the parameterized Gamma distribution.
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If we estimate the mean of Y(0) by using active measurement, estimator p̂ is

p̂ =
1
m

m∑

n=1

Y(Tn). (5)

Thus the variance of p̂ is

Var[ p̂] =
1

m2 Var
⎡
⎢⎢⎢⎢⎢⎣

m∑

n=1

Y(Tn)
⎤
⎥⎥⎥⎥⎥⎦

=
1

m2

m∑

n=1

Var[Y(Tn)] +
2

m2

∑

n!l

Cov (Y(Tn), Y(Tl)) (6)

=
1
m

Var[Y(0)] +
2

m2

∑

n!l

∫
R(τ) f|n−l|(τ)dτ (7)

where fk is probability density function (pdf) of Tk, R(τ) = Cov (Y(t),Y(t − τ)) is the autocovari-
ance function (ACF) of the ground truth process Y(t) (we can express R(τ, t) by τ alone, because
Y(t) is stationary) and the last equality follows from the stationary property of Y(t) and the probe
packet process.

If R(τ) is convex, the following can be proven by using Jensen’s inequality. No other probing
process with an average interval of µ has a variance that is lower than that of periodic-probing
(see [16]). Estimator variance is connected with accuracy, lower is better, so periodic-probing is
the best policy if we focus only on variance.

On the other hand, periodic-probing does not satisfy the assumptions of NIMASTA due to
non-mixing, so periodic-probing is not necessarily the best. This is because a phase-lock phe-
nomenon may occur and the estimator may converge on a false value when the cycle of the
ground truth process corresponds to the cycle of the probing process. Namely, periodic-probing
has a bias.

To tune the tradeoff between traditional policies obeying Poisson arrivals and periodic-probing
(which has a bias but has the advantage in terms of variance), [16] proposes a suboptimal policy
that gives an inter-probe time that obeys the parameterized Gamma distribution. The pdf that is
used as the interval between probe packets is given by

g(x) =
xβ−1

Γ(β)

(
β

µ

)β
e−xβ/µ (x > 0), (8)

where g(x) is the Gamma distribution whose shape and scale parameters are β and µ/β, respec-
tively. µ (> 0) denotes the mean, and β (> 0) is the parameter. When β = 1, g(x) reduces to
the exponential distribution with mean µ. When β → ∞, the policy reduces to periodic-probing
because g(x) converges on δ(x − µ).

If ACF is convex, it has been proven that the variance of estimator p̂ sampled by intervals
that follow equation (8) monotonically decreases as β increases. This decrease is caused by the
decrease of the covariance part which is the second term on the right-hand side of equation (7).
We can achieve small variance (it approaches the variance of periodic-probing) by setting β to a
large value since equation (8) converges on periodic-probing towards limit β→ ∞.

The problem of bias due to the phase-lock phenomenon can be avoided if we tune β to a
limited value (the probing process that has intervals set by equation (8) is mixing). Resolving the
tradeoff between a traditional policy that assumes Poisson arrivals and periodic-probing yields a
suboptimal probing process if we give β an appropriate value.
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4. The application to CoMPACT monitor

This section discusses the application of Gamma-probing to CoMPACT monitor. First, we
must determine the ground truth process observed by CoMPACT monitor. Comparing equa-
tion (5) with equation (3), we can consider that stochastic process Y(t) observed by CoMPACT
monitor is

Y(t) = 1{V(t)>c}
A(t)

E[A(t)]
, (9)

where V(t) and A(t) are stochastic processes corresponding to sample path v(t) and a(t), respec-
tively. If it is confirmed that the ACF R(τ) of stochastic process Y(t) is convex, we can guarantee
an improvement in accuracy due to Gamma-probing by applying the theory in section 3.

The convexity of ACF has been verified for cases of simple virtual delay process and loss
process using data of large-scale passive measurements and simulations ([16]). However, Y(t)
observed by CoMPACT monitor is weighted by traffic A(t) of a specific flow, so the property of
Y(t) clearly differs from the delay/loss processes that are influenced by all flows on the network.
Therefore, we must confirm the convexity of R(τ) in the CoMPACT monitor case. In section 5
and section 7, we will show that the assumption (R(τ) is convex) is appropriate to CoMPACT
monitor.

As described in section 2, we consider v(t) and a(t) are sample paths of corresponding
stochastic processes since CoMPACT monitor estimates the time average of sample path given
by equation (2). However, as explained in section 3, the ground truth process Y(t) is stationary
stochastic process in [16], and the decrease of variance of p̂ is guaranteed for the estimation
of the ensemble mean of Y(t). The variance of p̂ depends on both stochastic variations of Y(t)
and Tn. On the other hand, CoMPACT monitor observe sample path y(t) rather than stochastic
process Y(t), because CoMPACT monitor estimates one-way delay that is experienced by user
flows.

Therefore, it is desired in CoMPACT monitor that variance of estimator p̂ which depends
only on sampling time Tn on certain sample path rather than Y(t) decreases. In other words,
variance we want to decrease is given by

Var[ p̂] =
1

m2

m∑

n=1

Var[y(Tn)] +
1

m2

∑

n!l

Cov(y(Tn), y(Tl)). (10)

Note that equation (10) corresponds to equation (6). If the ACF of Y(t) is convex, we can consider
that the covariance part, which is the second term on the right-hand side of equation (10), tends
to decrease as β increases. Thus the variance of inter-probe time given by equation (8) is µ2/β;
and it to decreases as β increases. Hence, we can also expect that the variance part, which is
the first term on the right-hand side of equation (10), decreases as β increases since none of the
observed values y(Tn) vary. In section 5 and section 7, we will show that the variance of estimator
which depends only on Tn decreases with increase of β by using Gamma-probing through the
simulation.

5. The effectiveness of suboptimal probe intervals

5.1. Simulation model
We used NS-2 [17] based simulations to investigate the effectiveness of Gamma-probing in

the framework of CoMPACT monitor. The network model we used in the simulation is shown in
Fig. 6.
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Figure 6: Network model

Table 1: Type of user flows

Flow
type

Flow
ID

Mean ON/OFF
period

Distribution of
ON/OFF length

Shape
parameter

Rate at
ON period

type 1 #1-5 10s/5s Exponential - 6 Mbps
type 2 #6-10 5s/10s Exponential - 6 Mbps
type 3 #11-15 5s/10s Parete 1.5 9 Mbps
type 4 #16-20 1s/19s Parete 1.5 9 Mbps

There are 20 pairs of source and destination end hosts. Each end host on the left in Fig. 6 is a
source and transfers packets by UDP to the corresponding destination end host on the right. User
flows are given as ON/OFF processes and categorized into the four types listed in TABLE 1;
there are five flows in each type.

Probe packet flows are categorized into the five types listed in TABLE 2. Note that Exponen-
tial and Deterministic in TABLE 2 are special cases of Gamma distribution, and parameters of
Exponential and Deterministic are parameters of the Gamma distribution corresponding to each
probe type. 300 flows of each type are streamed over the two routes shown in Fig. 6, so the total
number of probe packet flows in the network is 3000. To analyze the variance of the estimator,
we streamed a large number of probe packet flows. Of course, we can estimate the empirical
delay from just one probe packet in each flow.

User flow packets and probe packets are 1500 bytes and 64 bytes, respectively. Link capac-
ities are identical at 64 Mbps. Delay occurs mainly in the link between the core routers, since it
is a bottleneck, but no loss occurs, because there is sufficient buffering.

We observed the traffic by passive measurement at the queue of the edge router on the source
side. Let δ denote 40 ms.

We ran the simulation for 500 s. The non-intrusive requirement (the effect of probe packets
can be ignored) was satisfied, since the ratio of the probe stream to all streams is only 0.00197%
or so.

5.2. The convexity of ACF
In this subsection, we will discuss whether the ACF of the ground truth process Y(t) is convex.

Note that the ground truth process is treated as stochastic process Y(t), not sample path y(t).
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Table 2: Type of probe

Distribution of probe intervals Parameter β Mean probe intervals
Exponential (β = 1) 0.5 s

Gamma β = 5 0.5 s
Gamma β = 25 0.5 s
Gamma β = 125 0.5 s

Deterministic (Periodic) (β→ ∞) 0.5 s
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Figure 7: Autocovariance function (flow #1)

The ground truth process observed by CoMPACT monitor is given by equation (9). We
compute V(t), which is the virtual one-way delay, by using the queue occupancy (byte) of the
core router on the source side. In our simulation model, the greatest part of the delay occurs at
the core router on source side, because the link between the core routers is a bottleneck. Thus
we can ignore any delay at other routers.

The (standardized) ACF for c = 0.1 for flow #1 with 95% confidence intervals on 10 experi-
ments is depicted in Fig. 7. To plot Fig. 7, we used data where the queue occupancy and the traffic
were recorded every 0.01 seconds. Representing each flow type, we also plotted flows #6, #11
and #16. This permitted the conclusion that none of these results contradicted the assumption
that ACF is convex.

5.3. One-way delay distribution
In this subsection, we will show that CoMPACT monitor can estimate the empirical one-way

delay by using Gamma-probing. The estimation of the complementary cumulative distribution
function (CDF) of the one-way delay experienced by user flows (as given by equation (2)) will
be shown below. Note that v(t) and a(t) are both sample paths in equation (2).

To estimate the complementary CDF of the one-way delay experienced by flow #1, we used
probe packet flows with parameter β = 1, 25 and β → ∞. Note that β = 1 corresponds to
traditional PASTA-base probing. Each result, with 95% confidence intervals, is shown in Fig. 8.
Note that the horizontal axis, which is the one-way delay, corresponds to c in equation (2). To
compare the empirical delay with the estimate from CoMPACT monitor, we include the estimate
from active measurement in the plot.
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Figure 8: The estimation of comprementary CDF (flow #1)

In Fig. 8, we can see that the CoMPACT monitor gives good estimates of the true value. We
cannot judge the superiority or inferiority of any type of probe packet flows. Representing each
flow type, we have plotted for flows #6, #11 and #16 and similar results are gained.

5.4. Accuracy Improvement of CoMPACT monitor
In this subsection, we will verify the relationship between the parameter of Gamma distri-

bution, used as the inter-probe time, and the variance of estimator. Note that we consider the
variance of p̂, which depends only on probe packet timing (namely, sampling time Tn).

We plot the standard deviation of each point of the complementary CDF (shown in subsec-
tion 5.3) in Fig. 9. Note that the horizontal axis corresponds to the one-way delay, which is c
in equation (2). Error bars indicate the 95% confidence intervals when the standard deviation
calculated from 30 probe packet flows is considered to be a single data point.

The standard deviation clearly decreases as β increases from β = 1 to β = 125. Note that
β = 1 corresponds to traditional PASTA-base probing. In periodic-probing, i.e. β → ∞, the
standard deviation is often larger than that with β = 125 or β = 25. Our belief is that this reversal
is a sign of the phase-lock phenomenon, which occurs when the cycle of the ground truth process
corresponds to the cycle of the probing process. In section 6, we verify phase-lock phenomenon
in detail. We got similar results for other flows though Fig. 9 shows only the results of flow #1
and #11.

Consequently, it was confirmed that we can obtain adequate accuracy on variance, which
depends only on sampling time Tn with a suboptimal probing process, if we tune the parameter
of Gamma distribution, which is used as the inter-probe time.
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Figure 9: Standard deviation of estimator

5.5. The upper bounds of variance
Supplementing the simulation results in previous subsection, we prove that periodic-probing

is assuredly superior to the traditional PASTA-based probing.
Let us idealize the traffic process a(t) as an ON/OFF process. We assume a(t) is the binary

process which takes value α if the target flow streams, and 0 otherwise. Thus p̂ is expressed by

p̂ =
m∑

n=1

1{v(Tn)>c}
a(Tn)

∑m
l=1 a(Tl)

=

m∑

n=1

1{v(Tn)>c}
α · 1{a(Tn)>0}∑m
l=1 α · 1{a(Tl)>0}

=

∑m
n=1 1{v(Tn)>c∧a(Tn)>0}∑m

l=1 1{a(Tl)>0}
. (11)

Since UDP does not control the volume of traffic, this assumption is appropriate for UDP flows.
Now, we consider the range of equation (11). 1{v(t)>c∧a(t)>0} and 1{a(t)>0} are the binary pro-

cesses, and we can divide them into the periods in which the processes take 0 and 1. If they are
observed by periodic-probing, the difference between the maximum and minimum observation
frequency is 1 at most in one period (see Fig. 10).

The maximum range ∆ of equation (11) is given by

∆ =
k2

mq − k1
, (12)

where k1 and k2 denote the number of periods of 1{a(t)>0} = 1 and 1{v(t)>c∧a(t)>0} = 1, respectively,
and q denotes the time average of 1{a(t)>0}.

The distribution that has maximum variance with range ∆ has the following pdf h(x).

h(x) =
1
2
δ(x − a) +

1
2
δ(x − a − ∆),

where δ(·) denotes Dirac δ function and a is an arbitrary constant. Therefore, the upper bounds
of estimator variance are as follows.

Var[p̂] ≤
(
∆

2

)2

=
k2

2

4(mq − k1)2 . (13)
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Figure 10: The observation frequency of periodic-probing
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Figure 11: The upper bounds of periodic-probing

Calculating k1, k2 and q in the above simulation, we plot the upper bounds of periodic-
probing in Fig. 11. Note that standard deviations of PASTA-based probing and periodic-probing
(the same data as plotted in Fig. 9) are displayed.

The results of flow #1 confirm that the upper bounds of periodic-probing are smaller than
the standard deviation of PASTA-based probing in the domain of interest (the domain with large
delay). Therefore, it is guaranteed that periodic-probing is surely superior to PASTA-based prob-
ing. The results of flows #6, #11 (not displayed in Fig. 9) are similar to the results of flow #1.

The results of flow #16 show that the upper bounds of periodic-probing are larger than
the standard deviation of PASTA-based probing because the combination of flow type 4 (e.g.
flow #16) and equation (13) is bad. The type 4 flows have short ON periods and long OFF pe-
riods as shown in TABLE 1. Thus the maximum range given by equation (12) becomes large
because the denominator becomes small. Therefore, the appropriate upper bounds cannot be
given by equation (13).

6. Phase-lock phenomenon

In this section, we will discuss the phase-lock phenomenon in sample path observation. We
will show that the accuracy reversal between periodic-probing (β → ∞) and Gamma-probing
(β = 125) in Fig. 9 occurs because periodic-probing locks the phase of the ground truth process.



/ Procedia Computer Science 00 (2010) 1–17 14

Periodic-probing

0

0.000005

0.00001

0.000015

0.00002

0.000025

970 980 990 1000 1010 1020 1030

Phase (Number of probe packets)

V
a
ri
a
n
c
e
 o

f 
e
s
ti
m

a
ti
o
n

(C
o
M

P
A

C
T

 m
o
n
it
o
r)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

P
o
w

e
r

(P
o
w

e
r 

s
p
e
c
tr

u
m

)

CoMPACT monitor (Periodic) Power spectrum

Gamma-probing (beta=125)

0

0.000005

0.00001

0.000015

0.00002

0.000025

970 980 990 1000 1010 1020 1030

Phase (Number of probe packets)

V
a
ri
a
n
c
e
 o

f 
e
s
ti
m

a
ti
o
n

(C
o
M

P
A

C
T

 m
o
n
it
o
r)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

P
o
w

e
r

(P
o
w

e
r 

s
p
e
c
tr

u
m

)

CoMPACT monitor (beta=125) Power spectrum

Figure 12: Power spectrum and variance of estimator

Convex ACF means that the ground truth process does not have any specific periodicity. If the
ACF is strictly convex, the variance of estimator with periodic-probing is minimum as described
in section 3.

However, there is the possibility that sample path y(t) has, over a finite interval, accidental
periodicity, even if the ACF of the ground truth process Y(t) is convex. This is because the
sample path over a finite interval fails to well represent the characteristics of the correspond-
ing stochastic process. Namely, it is possible that the sample path has, over a short time, some
specific periodicity by chance, even if there is no specific periodicity over the long term. This
accidental periodicity destroys the convexity of ACF with regard to the time average and thus
causes the phase-lock phenomenon. If the interval in which we want to measure QoS is suffi-
ciently long, the phase-lock phenomenon will not happen because the ACF of y(t) over the long
term converges on the ACF of Y(t) in the meaning of ensemble mean (we must assume that Y(t)
is ergodic). Therefore, the phase-lock phenomenon is possible with finite observation intervals.

To verify the relation between accidental periodicity and accuracy, we altered the simulation
described in section 5. All conditions were unchanged except for the characteristics of probe
packets which were altered as follows. The parameter of inter-probe time was set at β → ∞
(periodic-probing) and β = 125. We examined probe packets with 61 different inter-probe times
(namely 61 kinds of periodicity). Mean number of probe packets in the 500 s simulation (corre-
sponding to m) ran from 970 to 1030 (e.g. if mean number of probe packets is 1000, the mean
inter-probe time is 500 s / 1000 packet = 0.5 s).

We estimated one-way delay by probe packet flows which have 61 kinds of periodicity, and
compared the variance of estimator with the power spectrum of the sample path over the simula-
tion time |F [y(t)]|2 (0 ≤ t < 500) (F [·] denotes Fourier transform and power spectrum refers to
the energy of each frequency component). The result for flow #1 is shown in Fig. 12. Note that
we used 0.1s as the threshold of one-way delay c.

We can see that periodic-probing yields high estimator variance at the points with strong
periodicity, which is indicated by power spectrum of finite time sample path. On the other hand,
variance of estimator by Gamma-probing does not depend on the power spectrum. Therefore,
the phase-lock phenomenon, which happens because probing locks due to accidental periodicity
within a finite time sample path, was confirmed even if the ACF of the ground truth process is
convex (namely the ground truth process does not have any specific periodicity).








