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Abstract—In network evaluation through simulations, accu-
rately modeling traffic of real networks is difficult. Even if
accurate traffic modeling is achieved, it is also difficult to
accurately estimate a rate of rare packet loss events. For accurate
estimations of rare events, Importance Sampling (IS) based
on the change-of-measure technique using traffic models has
been investigated. However, these studies are inapplicable for
traffic traces of real networks since the applicable traffic models
are extremely limited. In this paper, we propose a model-less
approach to accurately estimate a packet loss rate through
a simulation without directly modeling traffic. The change-of-
measure is achieved based on traffic traces of networks in our
model-less approach. We evaluated the applicability of the model-
less approach on a G/M/1/K system with a traffic trace of a real
network and confirmed that the model-less approach achieves up
to 145 times accurate than normal a trace-driven Monte Carlo
(MC) simulation.

Index Terms—Network Simulation, Packet Loss Rate, Impor-
tance Sampling, Rare Event Simulation

I. INTRODUCTION

Network simulation is a fundamental technique to evaluate
Quality of Service (QoS) on networks. Especially for large-
scale networks, a low-cost evaluation can be achieved by a
simulation technique before Internet Service Providers (ISPs)
or other companies actually build their networks. Moreover,
QoS evaluation through network simulations provides helpful
information when we develop emerging applications/protocols
on networks.

When we evaluate QoS of networks through simulations,
accurately modeling traffic of real networks is an important
but difficult task. Many traffic models that reflect various
characteristics of the traffic measured in real networks have
been proposed by prior works (see [2] and the references
therein). The most fundamental one is a Poisson traffic model.
It was reported that traffic of real networks has various
characteristics, including long-range dependency [3], self-
similarity [4], periodicity [5], which are different from the
Poisson traffic model. Therefore, we need to choose the best
traffic model from many traffic models, according to a situation
that a simulation reproduces. However, due to the variety of
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accurate estimation with a traffic trace in a real network.

traffic models, it is difficult to select an appropriate traffic
model and tune its parameters for the traffic of the real network
(The double arrows in Fig. 1).

Even if the accurate traffic modeling is achieved, it is also
difficult to accurately estimate QoS regarding rare events, such
as a packet loss rate in the modern Internet. For emerging
applications with strict performance needs, ITU-T Recommen-
dation Y.1547 [6] defines a QoS class with an upper bound
10−5 on a packet loss rate. Packet loss events are rare events
in networks with such a QoS class, and it is a very difficult
task to estimate the packet loss rate through a simulation.

For accurate estimations of rare events, Importance Sam-
pling (IS) in which a simulation of a network where the
events occur more frequently is performed has been used [7]–
[9]. In the IS method for networks, the result of the original
network is obtained by change-of-measure from the result
of the network in the simulation. In most of the studies
regarding the IS method in networks, the change-of-measure is
analytically calculated based on a traffic model (model-based
IS). They are inapplicable for real network traffic since the
applicable traffic models, network topology, etc. are extremely
limited, e.g. Poisson traffic model on a single router, etc. (The
dotted arrows in Fig. 1).

Although there are a few works regarding IS in trace-driven
simulation without traffic models [10], [11] (The triple arrows
in Fig. 1), they require a per-flow packet-level traffic trace in
which packet arrivals of each flow are recorded. In trace-
driven IS, traffic traces of multiple flows that are measured
in a real network is used, and the phases of the flow traffic
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traces are shifted in order to cause congestion. Because of its
structure, change-of-measure cannot be obtained analytically
unless they are uncorrelated in a time-space. Unfortunately,
per-flow packet-level traffic traces are hardly disclosed in
public. Furthermore, since these traces in real networks are
definitely correlated, trace-driven IS is not suitable for traffic
traces in real networks. In addition, to the best of our knowl-
edge, no study on trace-driven IS has been published after the
studies [10], [11], and there is no prospect of expansion of
trace-driven IS to complicated topologies.

In this paper, we propose a model-less approach to accu-
rately estimate a packet loss rate through a simulation without
directly modeling traffic (The bold arrow in Fig. 1). The
model-less approach provides change-of-measure with a traffic
trace of a network, including real networks. Though traffic of
a simulation actually performed in the model-less approach is
totally different from a traffic trace, an appropriate estimation
can be achieved. Despite the packet loss rate in the original
network to be evaluated naturally does not correspond to that
of the simulation, the estimation result of the loss rate for
a traffic trace is obtained by a change-of-measure technique.
Though change-of-measure in the model-less approach is
based on model-based IS, it utilizes a frequency distribution
of a discretized traffic trace instead of a traffic model. By
a direct change-of-measure with a traffic trace, we can avoid
the difficulty of model selection (The double arrows in Fig. 1),
the difficulty in analysis, and the restrictions on topology (The
dotted arrows in Fig. 1). The model-less approach has potential
applicability for queueing networks with complex topologies
though we evaluate the model-less approach for a G/M/1/K
as a first step in the development in this paper.

The main contributions of this paper are as follows.

• We construct a theoretical framework to derive change-
of-measure without direct modeling of network traffic.
Change-of-measure is achieved with a traffic trace of
a network, and there is no assumption regarding traffic
characteristics.

• We design an algorithm to generate traffic of a simulation
actually performed. By the algorithm, the simulation
traffic in which rare events in a traffic trace frequently
occur is generated from a traffic trace, and an accurate
estimation of a packet loss rate is achieved.

• Through simulations including a traffic trace of a real
network, we confirm the effectiveness of the model-less
approach on a G/M/1/K system.

The remainder of this paper is organized as follows. First,
we summarize related work in Section II, and detail model-
based IS in Section III. Next, we formulate the problem
we tackle in Section IV. Section V explains the model-less
approach, and Section VI evaluate the proposed method with
Poisson traffic traces and a traffic trace in a real network.
Lastly, in Section VII, we conclude the paper and mention
future directions of the research.

II. RELATED WORK

IS has been developed by many researchers in the literature
of rare event simulation (see [12] and references therein).
In the research field of queueing theory, many researchers
have investigated how to achieve an accurate/fast estimation
of statistics regarding rare events including buffer overflow
events [13]. IS in queueing networks with complex topologies
have also been tried, and Dupuis et al. investigated buffer
overflows probability in stable open Jackson networks [14].
Mahdipour et al. evaluated the performance of IS in Jackson
networks [8]. Some researchers have tackled optimization
problems of estimation accuracy. Kim et al. proposed a non-
parametric adaptive IS using a kernel function estimation
method to explore the optimal condition of a simulation [15].
de Boer et al. also proposed an optimization method based
on cross-entropy, and they confirmed the effectiveness of the
method in Jackson networks [16].

There are a few works that are applicable for traffic traces of
real networks while many works regarding IS techniques have
been applied for markovian queueing networks. Paschalidis et
al. proposed a trace-driven IS method in which phase of
multiple traffic traces are synchronized to lead congestion
in a system [10]. By using change-of-measure, the result in
a system with synchronized traffic traces are converted to
a result in a system where the phase of traffic traces are
randomized. Reference [11] also proposed a simulation tech-
nique with a similar idea. However, these studies structurally
inapplicable for systems with correlated flows, and traffic
traces of parallel flows are generally correlated. Additionally,
traffic traces are not always measured as per-flow packet-level
traces. In the literature of general IS that does not focus
on queueing systems, an IS technique for a system in which
part of the system is not directly known was proposed [17].
Regrettably, to the best of our knowledge, the studies that
apply the technique to the queueing systems is not reported.

III. MODEL-BASED IS

In model-based IS, a simulation of a network where the
target events occur more frequently than the original network
is performed, and the result of the simulation is converted to
the result of the original network. When we estimate a packet
loss rate of a network by model-based IS, we intentionally
increase the traffic intensity of the queueing model that ex-
presses the network in order to cause loss events frequently.
The loss rate of the original network can be obtained by the
change-of-measure technique.

When we estimate the loss rate on a single router with a
single queue, the estimator of model-based IS for the packet
loss rate can be given by

l̂IS =
1

c̃

c̃∑
j=1

{
1{j∈ϕ}

p(ω̃j)

p̃(ω̃j)

}
, (1)

where c̃ and ϕ represent the number of packets in a simulation
and a set {1, 2, . . . , c̃} of packet IDs, respectively. ω̃j denotes
a path of a queue length process of the router until arrival
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Fig. 2. A formulation in the model-less approach.

time sj of jth packet in a simulation. Namely, ω̃j is a sample
path of a queue length process in the period [0, sj ]. p(A)
and p̃(A) represent the probability density of an event A in
the original network and the simulation network, respectively.
The part p(ω̃j)/p̃(ω̃j) of Eq. (1), the ratio of the probability
density of a queue length process in the original network to
that of the simulation network, provides change-of-measure. If
a simulation network corresponds to an original network, i.e.
the condition is not changed, the estimator shown in Eq. (1)
is equal to the estimator of a simple Monte-Carlo simulation
since p̃(A) = p(A).

In model-based IS, it is needed that the change-of-measure
p(ω̃j)/p̃(ω̃j) is analytically derived from the traffic model of
the network. Therefore, the traffic model should be known and
probability density should be analytically solved by using it.
However, as we mentioned above, it is difficult to select/tuning
traffic models according to a traffic trace of a real network, and
simple traffic models that can be analytically treated cannot
represent characteristics of the traffic of the real network.
Consequently, we cannot accurately estimate the packet loss
rate for a network in which packet loss events are rare events,
with model-based IS.

IV. PROBLEM FORMULATION

We treat a network as a stochastic function of input/output
traffic in the formulation. Our formulation has high generality
and applicability for traffic in real networks since we do not
assume any restriction of input/output traffic characteristics. In
this section, we describe a formulation of a packet loss rate
estimation through a simulation (see Fig. 2).

In this paper, we express input and output traffic processes
of a network by point processes x(t) and y(t), respectively.
x(t) and y(t) are defined as the sum of Dirac delta functions,
x(t) =

∑
j δ(t−sj) and y(t) =

∑
j δ(t−uj), where sj and uj

denote arrival and departure time of jth packet, respectively.
Let xt and yt be sample paths of x(t) and y(t) on a period
[0, T ], respectively. Additionally, we also define a packet loss
process d(t) as d(t) =

∑
j δ(t − vj), where vj denotes the

time when jth packet losses. Let dt be a sample path of d(t)
on a period [0, T ].

Packet loss events stochastically occur depending on a
sample path xt of an input traffic process. A sample path
yt of an output traffic process and a sample path dt of a
packet loss process of a network can be represented by a
stochastic function f(·) as (yt, dt) = f(xt). f(·) is a function
that expresses the behavior of the network. We assume that
the value at time t on the sample path dt mainly depends on

the last τ period [t − τ, t) of traffic process, and the value
at time t on dt is approximately independent on xt in the
period [0, t − τ) for sufficiently large τ . Needless to say, the
output traffic process y(t) and the packet loss process d(t)
are stochastic processes, and there are two sources of the
randomness of the two processes: stochastic functions f(·) and
an input traffic process x(t). A packet loss rate l is defined by

l =

∫ T

0
dtdt∫ T

0
xtdt

.

We assume that the packet loss rate l is extremely low, and
it is highly dependent on a sample path xt of an input traffic
process. Since the main cause of packet loss events that we
assume is a buffer overflow, the dependency of a packet loss
rate on a traffic process is obvious.

The problem we tackle in this paper is a simulation-based
estimation of an average packet loss rate E[ l ] from a mea-
surement of traffic trace xt and a simulation of behavior f(·)
of a network. We assume that behavior f(·) of a network can
be accurately simulated by a simulation. Many packet-level
simulators including ns-3 simulator [18] have been proposed
in the literature on network simulations, and these outstanding
simulators achieve accurate reproduction of network behavior.
This assumption means that the following two equations hold:

p(yt|xt) = p̃(yt|xt), (2)
p(dt|xt) = p̃(dt|xt),

where p(A|B) and p̃(A|B) denote conditional probability
density that an event A occurs under the condition that an event
B occurs in an original network and a simulation network,
respectively.

Since it is relatively hard to simulate traffic by a traffic
model, as we mentioned above, we try to utilize a traffic
trace of a real network in a simulation. Of course, it is
easy to perform a trace-driven Monte Carlo (MC) simulation
by directly input the traffic trace into a network simulator,
i.e., we can obtain dt by simulating f(xt). In this paper,
however, we tackle to develop a method in which simulation
traffic x̃t different from a traffic trace xt is simulated as
(ỹt, d̃t) = f(x̃t), thereby accurately estimating the packet loss
rate. An output traffic process ỹt and a packet loss process d̃t
are obtained by the simulation. Though d̃t in the simulation
differs from dt, the packet loss rate l is appropriately derived
by a change-of-measure technique.

V. MODEL-LESS APPROACH

Our goal is to accurately estimate a packet loss rate by
an appropriate change-of-measure through a network simula-
tion. Aiming to achieve the goal, we propose the model-less
approach whose steps is shown in Fig. 3. In the model-less
approach, the change-of-measure is achieved based on a traffic
trace xt that is measured in a limited measurement period
[0, T ] on a real network. Though traffic in a simulation is
completely different from a traffic trace xt in a real network,
the packet loss rate should be estimated without bias by the
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change-of-measure. In this section, we will explain a change-
of-measure technique that achieves an unbiased and accurate
estimation, and how to generate traffic x̃t in a simulation.

A. Change-of-measure Technique

The model-less approach avoids analytical derivation of
change-of-measure, and enable an empirical derivation of
change-of-measure from a traffic trace. In order to achieve
empirical derivation of change-of-measure, we discretize a
traffic process and decompose it into patterns. Occurrence
frequency of each traffic pattern is counted, and change-of-
measure is calculated from a frequency distribution of traffic
patterns.

We design the proposed method to have high versatility by
eliminating restrictions (e.g., characteristics of a traffic trace,
network topology, and so on) while acting as an extension of
the conventional model-based IS. Using notations we defined
in Section IV, we can rewrite the estimator shown in Eq. (1)
of model-based IS as

1

c̃

c̃∑
j=1

{
1{j∈ϕ}

p(ω̃j)

p̃(ω̃j)

}
=

1

c̃

∫ T

0

d̃s
p(x̃s

t ∧ ỹst )

p̃(x̃s
t ∧ ỹst )

ds

=
1

c̃

∫ T

0

d̃s
p(x̃s

t )p(ỹ
s
t |x̃s

t )

p̃(x̃s
t )p̃(ỹ

s
t |x̃s

t )
ds

=
1

c̃

∫ T

0

d̃s
p(x̃s

t )

p̃(x̃s
t )
ds, (3)

where x̃s
t and ỹst denote sample paths of input and output

traffic processes until time s in a simulation, respectively.
Note that the operator ∧ denotes logical conjunction. The
last equality follows from Eq. (2). The change-of-measure is
achieved by the part p(x̃s

t )/p̃(x̃
s
t ) of Eq. (3). However, when

we derive p(x̃s
t )/p̃(x̃

s
t ), it is required to analytically calculate

p(x̃s
t )/p̃(x̃

s
t ) assuming traffic model since probability density

p(x̃s
t ) and p̃(x̃s

t ) of an event x̃s
t are defined on a space Rc̃.

According to the assumption of independence of dt on xt

in [0, t− τ), we can rewrite Eq. (3) as

1

c̃

∫ T

0

d̃s
p(x̃s,τ

t )

p̃(x̃s,τ
t )

ds, (4)

where x̃s,τ
t denotes a part of the sample path x̃t in the last τ

period [s− τ, s).
In the model-less approach, in order to achieve empirical

derivation of change-of-measure based on a traffic trace, we
replace x̃t and d̃t by sample paths X̃i and D̃i of discretized
processes, respectively. x̃t and d̃t are divided into discrete slots
with interval ∆.

X̃i =

∫ n∆

(n−1)∆

x̃tdt, D̃i =

∫ n∆

(n−1)∆

d̃tdt.

xt is also discretized as Xi. Similarly, we define X̃n,k
i =

{X̃i}n−k<i≤n as a discretized version of x̃s,τ
t . By defining

X̃n,k
i as a discretized process, p(x̃s,τ

t ) and p̃(x̃s,τ
t ) are also

replaced by P (X̃n,k
i ) and P̃ (X̃n,k

i ), respectively. P (A) and
P̃ (A) denote probability that an event A occurs in an original
network and a simulation network, respectively. Consequently,
the estimator is rewritten as

1

c̃

T/∆∑
n=1

D̃i
P (X̃n,k

i )

P̃ (X̃n,k
i )

. (5)

The part P (X̃n,k
i )/P̃ (X̃n,k

i ) in Eq. (5) corresponds the
change-of-measure, and the probability P (X̃n,k

i ) and P̃ (X̃n,k
i )

of an event X̃n,k
i are defined on a space Nk. It is important to

limit a period of the sample path used in change-of-measure
in Eq. (4). The limitation enable us to calculate the probability
P (X̃n,k

i ) and P̃ (X̃n,k
i ) by counting frequency of a traffic

pattern X̃n,k
i in Xi and X̃i.

B. Traffic Generation in Simulations

In the model-less approach, traffic patterns that are observed
in a traffic trace of an original network are listed, and input
traffic x̃t is generated for a simulation so that the frequency of
all patterns are the same. Traffic patterns referred to here are
Xn,k

i that is k consecutive slots in a discretized traffic trace
Xi. We define Ω as the set of all traffic patterns appearing
in Xi without duplicates. By making the frequency of all
patterns are the same, the frequency of the patterns that cause
loss events increases since we assume that the loss events are
rare. It is not a good policy to break the uniformity of the
frequency of the patterns. If we raise the frequency of specific
patterns, the frequency of the other patterns has to be decreased
thereby being difficult to calculate the probability P (X̃n,k

i )
and P̃ (X̃n,k

i ) from the low frequency of patterns.
The algorithm to generate input traffic x̃t with the uniform

frequency of all patterns is shown in Algorithm 1. The input
parameters of the algorithm are the following four parameters:
discretized traffic trace Xi, slot interval ∆, the number k of
a consecutive slot in a traffic pattern, and a simulation period
Tsim. The output of the algorithm is discretized traffic X̃i for
a simulation. Parameters are initialized on Line 1–3, and the
number Nsim of slots in discretized traffic X̃i is calculated
in Line 4. Note that ⌈·⌉ denotes a ceiling function. The loop
on Line 5–10 actually generates X̃i. On Line 6, among the
traffic patterns that can be joined to current X̃i, a traffic
pattern having the lowest frequency in simulation traffic X̃i



Algorithm 1 Traffic generation algorithm for simulations
Require: Xi,∆, k, Tsim

Ensure: X̃i

1: X̃i ← [0], κ← k − 1
2: for all χ ∈ Ω do
3: h(χ)← 0

4: Nsim ← ⌈Tsim/∆⌉
5: while length of X̃i < Nsim do
6: χ′ ← Randomly sample from arg min

Iκ(X̃i,χ)=1

h(χ)

7: if χ′ = ∅ then κ← κ− 1
8: else
9: [χ′[κ+ 1], . . . , χ′[k]] is joined to X̃i

10: h(χ′)← h(χ′) + 1
11: κ← k − 1

is randomly chosen. h(χ) denotes frequency of a pattern χ in
X̃i. Iκ(X̃i, χ) is an indicator function which equals 1 when
the last κ slots of X̃i correspond to the first κ slots of χ and
0 otherwise. If there is no χ satisfying the condition of the
argument of the minimum, κ is reduced thereby relaxing the
condition that the last κ slots of X̃i correspond to the first κ
slots of χ (Line 7). When χ′ is not empty, the selected pattern
χ′ is joined to X̃i with an overlap of κ slots (Line 9). After
the joining, frequency h(χ) of traffic patterns in X̃i is updated
on Line 10, and κ is initialized on Line 11.

Lastly, the discretized traffic X̃i that is obtained by Algo-
rithm 1 is converted to x̃(t). The value of each time slot of the
discretized traffic X̃i represents the number of arrival packets
in the time slot. Hence, we generate simulation traffic x̃(t) by
assuming the arrival time of packets sj is uniformly distributed
in a time slot.

VI. EVALUATIONS

In this paper, in order to evaluate the effectiveness of the
model-less approach, a packet loss rate is estimated in a simple
queueing model by the model-less approach and trace-driven
MC simulations. In the evaluations, we prepared the following
two traffic traces as input traffic: Poisson traffic trace and a
traffic trace of a real network in Widely Integrated Distributed
Environment (WIDE) project [19]. These input traffic are used
as an arrival process of G/M/1/K (i.e., M/M/1/K for Poisson
traffic trace). We compare the model-less approach and trace-
driven MC simulations in which the traffic trace is directly
input into a G/M/1/K queueing system. Note that the trace-
driven MC simulation in the evaluation is not a trace-driven
IS simulation we introduced in the introduction.

A. Poisson Traffic Trace

Firstly, we evaluate the most fundamental case where input
traffic follows the Poisson traffic model. However, the model-
less approach does not use the knowledge that the input traffic
follows the Poisson traffic model. By evaluating an M/M/1/K
queueing system where the true value of the packet loss rate
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is known, we can confirm whether the estimator of the model-
less approach has a bias or not.

The parameters of an M/M/1/K queueing system was tuned
so that a true value of the packet loss rate is 10−5. 10−5 is
also a criterion defined in the most severe QoS class in ITU-T
Recommendation Y.1547 [6]. The arrival rate and the service
rate are set to λ = 329.1 [packet/s] and µ = 1000 [packet/s],
respectively. The queue length K is set to 10 [packet]. We per-
form simulations 30 times, and the period for each simulation
is 2000 [s].

The results of the sample average of the estimators of the
packet loss rate are shown in Fig. 4. The horizontal and the
vertical axis represent the length of a traffic pattern k∆ and
sample average E[ l̂ ] of the estimators. The black line at 1.0×
10−5 represents the true value of the packet loss rate in the
M/M/1/K queueing system. According to the figure, we can
confirm that the model-less approach estimates the packet loss
rate without bias when k∆ ≥ 5× 10−2.

Figure 5 shows the variance of the estimators of the model-
less approach and the trace-driven MC simulation. The hori-
zontal and the vertical axis represent the length k∆ of a traffic
pattern and variance Var[ l̂ ] of the estimators. The black line
at 4.0 × 10−11 represents not true value but the variance of
the estimators of the trace-driven MC simulation. According
to the figure, most of the results of the model-less approach
is lower than that of the trace-driven MC simulation when the
length of a traffic pattern k∆ ≥ 5× 10−2 [s]. Especially, the
variance of the estimators of the model-less approach is about
1/12 of that of the trace-driven MC simulation when k = 4
and k∆ = 5×10−2 [s]. Since the estimators of the model-less
approach are unbiased for k∆ ≥ 5 × 10−2 [s] in Fig. 4, we
can confirm that the model-less approach provides an accurate
estimator of the packet loss rate.
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Fig. 6. The sample average of the estimator of the packet loss rate in a
G/M/1/K queueing system with the traffic trace of the real network.
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Fig. 7. The variance of the estimator of the packet loss rate in a G/M/1/K
queueing system with the traffic trace of the real network.

B. Traffic Trace of a Real Network

In order to verify the applicability of the model-less ap-
proach to traffic traces of real networks, we evaluate the
model-less approach with a traffic trace opened by MAWI
(Measurement and Analysis on the WIDE Internet) Working
Group in WIDE project [19]. The traffic trace we used was
measured at samplepoint-F on September 8, 2018, and we
extracted the arrival time of packets from the traffic trace. It
is difficult to analytically derive the true value of the packet
loss rate of a G/M/1/K queueing system with the traffic trace
of the real network. For that reason, we tune the service rate of
the G/M/1/K queueing system so that the packet loss rate of
the trace-driven MC simulation is approximately 10−4, thereby
setting µ = 106 [packet/s] as a service rate. The queue length
K is set to 10 [packet]. We perform simulations 10 times, and
a period for each simulation is 100 [s].

The estimation results of the model-less approach and the
trace-driven MC simulation are shown in Figs. 6 and 7.
According to the figures, we can confirm that an unbiased and
accurate estimation is achieved if k and k∆ are sufficiently
large. In particular, the variance of the estimator of the
model-less approach is 1/145 of that of the trace-driven MC
simulation when k = 8 and k∆ = 2.0× 10−5 [s].

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed the model-less approach to
accurately estimate a packet loss rate through a simulation
without directly modeling traffic. The model-less approach
provides a change-of-measure technique based on model-based
IS with a frequency distribution of discretized traffic patterns.
We evaluated the model-less approach in G/M/1/K with a
Poisson traffic trace and the traffic trace in the real network,
and confirmed that the model-less approach can achieve an

unbiased and accurate estimation. In the most effective cases
in the evaluation, the accuracy of the model-less approach is
145 times accurate than that of the normal trace-driven MC
simulation.

In future works, we will tackle the optimization problem of
the parameters of the model-less approach. The length of the
patterns and the interval of discrete slots should be specified
depending on characteristics of original networks and length
of traffic traces.

REFERENCES

[1] M. Terauchi, K. Watabe, and K. Nakagawa, “Model-Less Approach of
Network Traffic for Accurate Packet Loss Simulations,” in Proceedings
of the 26th IEEE International Conference on Network Protocols (ICNP
2018) Poster session, Cambridge, UK, 2018, pp. 251–252.

[2] J. Zhang, J. Tang, X. Zhang, W. Ouyang, and D. Wang, “A Survey of
Network Traffic Generation,” in Proceedings of the 3rd International
Conference on Cyberspace Technology (CCT 2015), Beijing, China,
2015.

[3] T. Karagiannis, M. Molle, and M. Faloutsos, “Long-Range Dependence:
Ten Years of Internet Traffic Modeling,” IEEE Internet Computing,
vol. 8, no. 5, pp. 57–64, 2004.

[4] K. Park and W. Willinger, Self-Similar Network Traffic and Performance
Evaluation. John Wiley & Sons, 2000.

[5] S. Floyd and V. Jacobson, “The Synchronization of Periodic Routing
Messages,” IEEE/ACM Transactions on Networking, vol. 2, no. 2, pp.
122–136, 2002.

[6] “Network Performance Objectives for IP-based Services,” ITU-T Rec-
ommendation Y.1541, 2011.

[7] J. Blanchet and H. Lam, “State-dependent Importance Sampling
for Rare-event Simulation: An Overview and Recent Advances,”
Surveys in Operations Research and Management Science,
vol. 17, no. 1, pp. 38–59, 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.sorms.2011.09.002

[8] E. B. Mahdipour, A. M. Rahmani, and S. Setayeshi, “Performance
Evaluation of an Importance Sampling Technique in a Jackson Network,”
International Journal of Systems Science, vol. 45, no. 3, pp. 373–383,
2014.

[9] I. Lokshina, “Study on Estimating Probabilities of Buffer Overflow
in High-speed Communication Networks,” Telecommunication Systems,
vol. 62, no. 2, pp. 289–302, 2016.

[10] I. C. Paschalidis and S. Vassilaras, “Importance Sampling for the Esti-
mation of Buffer Overflow Probabilities via Trace-driven Simulations,”
IEEE/ACM Transactions on Networking, vol. 12, no. 5, pp. 907–919,
2004.

[11] P. E. Heegaard, B. E. Helvik, and R. O. Andreassen, “Application of
Rare Event Techniques to Trace Driven Simulation,” in Proceedings
of the Winter Simulation Conference (WSC 2005), Orlando, FL, USA,
2005, pp. 509–518.

[12] J. Morio, M. Balesdent, D. Jacquemart, and C. Vergé, “A Survey of Rare
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