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Analysis of the Convergence Speed of the
Arimoto-Blahut Algorithm by the Second-Order
Recurrence Formula

Kenji Nakagawa, Member, IEEE, Yoshinori Takei, Member, IEEE, Shin-ichiro Hara, non-member, and
Kohei Watabe, Member, IEEE,

Abstract—In this paper, we investigate the convergence speed
of the Arimoto-Blahut algorithm. For many channel matrices, the
convergence speed is exponential, but for some channel matrices
it is slower than exponential. By analyzing the Taylor expansion
of the defining function of the Arimoto-Blahut algorithm, we
will make the conditions clear for the exponential or slower
convergence. The analysis of the slow convergence in this paper
is new. Based on this analysis, we will compare the convergence
speeds of the Arimoto-Blahut algorithm numerically with the
values obtained in our theorems for several channel matrices.
The purpose of this paper is to obtain a complete understanding
of the convergence speed of the Arimoto-Blahut algorithm.

Index Terms—channel capacity, discrete memoryless channel,
Arimoto-Blahut algorithm, convergence speed, Hessian matrix,
second-order recurrence formula.

I. INTRODUCTION

We consider a discrete memoryless channel with the input
and output alphabets of finite sizes. The channel capacity C'
of the channel is defined as the maximum value of the mutual
information between the input and output, where the maximum
is taken over the entire input probability distributions. By
Shannon’s channel coding theorem, C' is equal to the max-
imum information rate that can be transmitted with arbitrarily
small error probability.

Methods for calculating the value of the channel capacity
C fall into two categories. One is the direct method of
solving the mutual information maximization problem [14],
[15]. This is a convex optimization problem regarding the input
distribution and is generally considered to be solved by the
method of Lagrange multipliers. However, the constraint that
the probability must be between 0 and 1 should be carefully
considered, hence the channels where the channel capacity can
be calculated explicitly are limited.

The other is a sequential computation algorithm represented
by the Arimoto-Blahut algorithm [2], [3], [4]. In the Arimoto-
Blahut algorithm, a series of input probability distributions
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are computed by a recurrence formula, and they converge
to the input probability distribution that achieves the channel
capacity C. The Arimoto-Blahut algorithm can be applied to
any channel, and its capacity is computed.

Based on the original Arimoto-Blahut algorithm, much
work has been done. In [12], [17], [20], applicable channels
were extended to include more than just discrete memoryless
channels. In [11], [21], algorithms to accelerate the Arimoto-
Blahut algorithm were proposed. Furthermore, in [8], [11],
[13], [14], the Arimoto-Blahut algorithm is characterized by
divergence geometry.

In this paper, we study the convergence speed of the
Arimoto-Blahut algorithm. Although the convergence speed
is exponential for many channels, we found that for some
channels, the convergence speed is slower than exponential.
Exponential convergence has been studied in [2], [3], [21],
but no study of convergence speed other than exponential has
been conducted.

A. Purpose of Study

The purpose of our study is to classify discrete memoryless
channels and to determine when the Arimoto-Blahut algorithm
converges quickly and when it converges slowly.

First, we show that only two kinds of convergence speeds
occur. One is the exponential convergence, which is a fast con-
vergence, and the other is the convergence of order O(1/N),
which is a slow convergence. Then, we evaluate the conver-
gence speed theoretically in each case.

Exponential convergence is evaluated by the eigenvalues of
the Jacobian matrix of the defining function F' of the Arimoto-
Blahut algorithm. Its analysis is not difficult. On the other
hand, a convergence speed of order O(1/N) is determined
not only by the Jacobian matrix of F' but also requires the
analysis of the Hessian matrix, i.e., the second derivative of
F. The convergence speed of the order O(1/N) is analyzed
for the first time in this paper. The Hessian matrix of F' yields
a second-order nonlinear recurrence formula, and then we will
investigate the convergence speed of the recurrence formula. In
general, a nonlinear recurrence formula can rarely be solved in
an explicit form, and the recurrence formula in this paper also
cannot be solved explicitly. Therefore, a method to investigate
the speed of convergence must be devised. The key lemma is
Lemma 6 on the convergence speed of a recurrence formula
defined by a quadratic polynomial in one variable. In this
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paper, we also investigate the speed at which the mutual
information converges to the channel capacity C.

Based on these analyses, we numerically calculate the
convergence speeds of the Arimoto-Blahut algorithm for sev-
eral channels and compare them with the theoretical values
obtained in this paper.

II. ARIMOTO-BLAHUT ALGORITHM
A. Channel matrix and channel capacity

Consider a discrete memoryless channel X — Y with
the input source X and the output source Y. Let X =
{z1,...,2,} be the input alphabet and Y = {y1,...,yn}
be the output alphabet. The conditional probability that the
output symbol y; is received when the input symbol z; is
transmitted is denoted by P} = P(Y = y;|X = ), =

1,...,m,j =1,...,n, and the row vector P’ is defined by
Pt = (Pj,...,P}),i=1,...,m. The channel matrix ® is
defined by
P! Pl ... P!
o= =] : ] o
pm P pm
We assume that for any j (j = 1,...,n), there exists at least
one i(i = 1,...,m) with P} > 0. This assumption means

that there are no useless output symbols.

The set of input probability distributions on the input
alphabet X is denoted by A(X) = {A = (A\1,..., An)| N >
0,s = 1,...,m,> .~  \; = 1}. The interior of A(X) is
denoted by A(X)° = {A = (A1,...,A\m) € A(X) | A\ >
0,7 = 1,...,m}. Similarly, the set of output probability
distributions on the output alphabet ) is denoted by A(Y) =
{Q = (Qlw'-aQn)le > 0,5 = 17"'ﬂn72?:1Qj = 1},
and its interior A(Y)° is similarly defined as A(X)°.

Let @ = A® be the output distribution for an input
distribution A € A(X) and write its components as Q; =
Sty AiPj, j = 1,...,n. Then, the mutual information is
defined by I(X,®) = >, >0 \iPjlog (P}/Q;), where
log is the natural logarithm. The channel capacity C is defined
by

C = max I(\ D). (2)
AEA(X)
The unit of C' is nat/symbol.

The Kullback-Leibler divergence D(Q||Q’) for two output
distributions Q@ = (Q1,...,Qn), Q' = (Q},..., Q) € A(Y)
is defined [7] by

Dm%=2%m%. 3)
=1 j

An important proposition for investigating the convergence
speed of the Arimoto-Blahut algorithm is the Kuhn-Tucker
condition on the input distribution A = A* that achieves the
maximum of (2).

Theorem: (Kuhn-Tucker condition [6]) In the maximization
problem (2), a necessary and sufficient condition for the input
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distribution A* = (A},...,\;,) € A(X) to achieve the
maximum is that there is a certain constant C' with

=, for i with A} > 0,

< C, for i with \* = 0. @)

D(P!||X*®) {

In (4), C is equal to the channel capacity C.

Since the Kuhn-Tucker condition is a necessary and suf-
ficient condition, all the information about the capacity-
achieving input distribution A* can be derived from this
condition.

B. Definition of the Arimoto-Blahut algorithm

A sequence {AN = (A, ... AM)}y—o1.. C A(X) of
input distributions is defined by the Arimoto-Blahut algorithm
as follows [2], [4]. First, let A% = (\?,... A% ) be an initial
distribution taken in A(X)°, ie., A} > 0,7 = 1,...,m.
Then, the Arimoto-Blahut algorithm is given by the recurrence
formula

N il N

m)\i exp D(P'[|AN @) 7 5)
> A exp D(PF|AN @)
k=1
t=1,....mN=0,1,....

N+1 _
ANHL =

On the convergence of this Arimoto-Blahut algorithm, the
following results were obtained by Arimoto in [2], [3].
In [2], [3], defining

m

C(N+1,N) ==Y AVt log ANV

i=1
UL , AN pi
+ 33 AN Plog L (6)
i=1 j=
=1 S NPF
k=1
= —DANTHAY) + > ATIDPQN), ()

i=1
Arimoto obtained the following results.

Theorem Al:[2] If the initial input distribution AY is in
A(X)°, then

lim C(N +1,N)=C. ®)

N—00
Theorem A2:[2] If A is the uniform distribution, then
logm — h(X\*)
N )
where A* is the capacity-achieving input distribution, and
h(A*) is the entropy of A*.

0<C—C(N+1,N)< ©)

Theorem A3:[3] Assume that A* is unique and belongs to
A(X)°. Then,
) AN = A*, N = oo, and
ii) for sufficiently small arbitrary € > 0, there exists Ny =
No(e) such that

0<C—-C(N+1,N)<e- ()N, N> Np, (10)
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where 0 is a constant with 0 < 6 < 1 and is unrelated to ¢
and Nj. Further, in the expression ¢ - (§)V~"o, . denotes
multiplication, and (#)V~™° means # to the power of
N — Ny.
We can see from Theorem A3, under the assumptions of
Theorem A3, that the first term of (7) converges to 0, and the
second term converges to C'

C. Function from A(X) to A(X)

Let F;(\) be the defining function of the Arimoto-Blahut
algorithm (5), i.e.,

i exp D(P|A®)

Fi(A) = — ,i=1,...,m. (11)
> A exp D(PF||A®)
k=1
Define F(X) = (F1(A),..., F,,(X)). Then, F(X) is a differ-

entiable function from A(X’) to A(X), and (5) is represented
by ANt = F(AN).

In this paper, for the analysis of the convergence speed, we
assume

rank ® = m. (12)

Concerning this assumption, we see that in [2], [3], for
the analysis of the convergence speed, the uniqueness of
the capacity-achieving A* is assumed, which is a necessary
condition for (12). In fact, we have
Lemma 1: The capacity-achieving input distribution A\* is
unique under the assumption (12).
Proof: By Csiszar[7],p.137,Eq. (37), for arbitrary @ €
A),
Y MD(PQ) =I(A,®) + D(A®|Q).  (13)
i=1
By the assumption (12), we see that there exists Q° € A(Y)
[15] with

D(PYQ°) =...=D(P™|Q% =C° (14)

Substituting Q@ = QY into (13), we have C° = I(X\, @) +
D(A®||Q°). Because C" is a constant,
0
)\én&a(x)l()\ , D) — emAl(n )D()\CDHQ ).
Define W = {A®| X € A(X)}. Then, W is a closed convex
set, and thus by Cover [6], p.297, Theorem 12.6.1, @ = Q*,
which achieves mingew D(Q||QP), exists and is unique. By
the assumption (12), the mapping A 5 A — AP € W is one
to one; therefore, A* with Q* = A*® is unique. [ |
Remark 1: Because of the equivalence (15), the Arimoto-
Blahut algorithm can be obtained by Csiszéar [8], Chapter 4,
“Minimizing information distance from a single measure”,
Theorem 5.
Lemma 2: The capacity-achieving input distribution A* is
the fixed point of the function F'(A). That is, F'(A*) = A*.
Proof: In the Kuhn-Tucker condition (4), let us define m1
as the number of indices ¢ with A} > 0, i.e.,

i d

15)

> 0,
=0,

i=17...,m1,

it=my1+1,...,m, (16)
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by reordering the input symbols (if necessary), then

q * :C, izl,...,ml,
D(P||>‘(I)){<C7 i=mp+1,...,m a7
We have
Z)\k exp D(P¥| A*®) ZA °,  18)
k=1
hence, by (11),(16), and (18),
« e‘cx\;kec, i=1,...,mq,
E()‘){O, i=mi1+1,...,m, (19)
=\,i=1,...,m, (20)
which shows F(A*) = A*. [ |

The sequence {AN}, _ o1
rithm converges to the fixed point A*, i.e., AN S AN —
oo. We will investigate the convergence speed by using the
Taylor expansion of F'(A) about A = \*.

of the Arimoto-Blahut algo-

D. Convergence speed of AN — A\*

Now, we define two kinds of convergence speeds for inves-
tigating ANV — \*.
(i) Exponential convergence
AN = X* is the exponential convergence if

AN =A< K- ()N, N=0,1,..., (21
K>00<60<1,
where ||A|| denotes the Euclidean norm, i.e., ||A|=
(... +22)"%
(ii) Convergence of order O(1/N)
AN — X\* is the convergence of order O(1/N) if
lim N(AY = A)=K; #0,i=1,....,m. (22

N—o00

E. Type of index

Now, we classify the indices ¢ (¢ = 1,...,m) in the Kuhn-
Tucker condition (4) in more detail into the following 3 types.

_ = (, fori with A} > 0 [type-I],
D(PA*®){ =C, fori with \* =0 [type-Ill,  (23)
< C, for ¢ with A} = 0 [type-III].
Let us define the sets of indices as follows.
all the indices: Z = {1,...,m}, (24)
type-I indices: Zy = {1,...,m1 }, (25)
type-II indices: Zj; = {m1 +1,...,m1 +ma}, (26)
type-III indices: Zyr = {m1 + m2+ 1,...,m}. (27)

We have |I‘: m, |II|: mi, |IH|: ma, |IIII|: m—mi —
mo =mg, L =T UL UZnr and m = mq +mo +mas. Iy is
not empty, and |Z;|= my > 2 for any channel matrix, but Zyy
and Zy;; may be empty for some channel matrices.
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p! p?
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Fig. 1. Positional relation of row vectors P1, P2, P3 of ®(1) and Q* in
Example 1.

FE. Examples of convergence speed

Let us consider the dependence of the convergence speed
of the Arimoto-Blahut algorithm on the channel matrices.

For many channel matrices ®, the convergence is exponen-
tial, but for some special @, the convergence is very slow. Let
us consider the following three examples with input alphabet
size m = 3 and output alphabet size n = 3, taking types-I, -1l
and -III into account.

Example 1: (only type-I) If only type-I indices exist, then
A; > 0,7 =1,2,3; hence, Q* = A*® is in the interior of
AP'P?P3. See Fig. 1. As a concrete channel matrix of this
example, let us consider

0.800 0.100 0.100
0.100 0.800 0.100
0.250 0.250 0.500

o) = (28)

For this ®1), we have C' = 0.323[nat/symbol], A* =
(0.431,0.431,0.138) and Q* = (0.422,0.422,0.156). The
vertices of the large triangle in Fig. 1 are e; = (1,0,0), es =
(0,1,0), e3 = (0,0,1). We have D(P'|Q*) = C,i =
1,2, 3, then considering the analogy to Euclidean geometry,
AP'P2P3? can be regarded as an “acute triangle.”

Example 2: (types-1 and -II) If there are type-I and type-II
indices, we can assume A} > 0, A5 > 0, A = 0 without loss of
generality; hence, Q* is on the side P'P? and D(P?||Q*) =
C,i=1,2,3. See Fig. 2. As a concrete channel matrix of this
example, let us consider

0.800 0.100 0.100
0.100 0.800 0.100
0.300 0.300 0.400

P2 = (29)

For this ®®, we have C = 0.310 [nat/symbol], A* =
(0.500, 0.500, 0.000) and Q* = (0.450,0.450,0.100). Con-
sidering the analogy to Euclidean geometry, AP'P?P3 can
be regarded as a “right triangle.”

Example 3: (types-1 and -III) If there are type-I and type-
III indices, we can assume A} > 0,3 > 0, A = 0 without
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€3

P3

Pl Q* P2

€1 €2

Fig. 2. Positional relation of row vectors P!, P2, P3 of ®(2) and Q* in
Example 2.

€3

P3

Pl Q* P2

€1 €9

Fig. 3. Positional relation of row vectors P!, P2, P3 of ®(3) and Q* in
Example 3.

loss of generality; hence, Q* is on the side P!P? and C =
D(PY|Q*) = D(P?|Q*) > D(P?||Q*). See Fig. 3. As a
concrete channel matrix of this example, let us consider

0.800 0.100 0.100
3 = | 0.100 0.800 0.100 (30)
0.350 0.350 0.300

For this ®®), we have C = 0.310 [nat/symbol], A* =
(0.500, 0.500, 0.000) and Q* = (0.450,0.450,0.100). Con-
sidering the analogy to Euclidean geometry, AP!'P2?P3 can
be regarded as an “obtuse triangle.”

For the above ®1), &) &) we show in Fig. 4 the speed
of convergence of |\ — \j|— 0. By Fig. 4, we see that in
Examples 1 and 3, the convergence is exponential, while in
Example 2, the convergence is slower than exponential.

From the above three examples, it is inferred that the
Arimoto-Blahut algorithm converges exponentially when type-
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Fig. 4. Comparison of the convergence speed in Examples 1,2,3.
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IT indices do not exist and slowly when type-II indices exist.
We will analyze this phenomenon in this paper.

Remark 2: Related to the above investigation of triangles,
we have given a geometric investigation of the channel capac-
ity in [15] based on divergence geometry.

G. Analysis of convergence speed

We will show in this paper for which channel the conver-
gence speed of the Arimoto-Blahut algorithm is exponential
and for which channel it is of order O(1/N).

In previous studies [2], [21], the exponential convergence
has been investigated. In [2], [21], the authors proved that
the convergence speed is exponential if the capacity-achieving
input distribution A* = (Af,..., A% satisfies A\ > 0,4 =
1,...,m. In this case, all the indices are of type-I and there
are no type-II indices. When there are no type-II indices, the
convergence speed is determined by the Jacobian matrix of
the defining function F(X) of the Arimoto-Blahut algorithm.

In this paper, we will investigate the case in which type-II
indices exist. If there exist type-II indices, the convergence
speed of the Arimoto-Blahut algorithm is determined not only
by the Jacobian matrix, but also by the Hessian matrix. We
will analyze the nonlinear recurrence formula defined by a
quadratic polynomial, which is obtained from the Hessian
matrix. Then, we will show, under some assumptions, that

the convergence speed of the recurrence formula is of order
O(1/N).

III. TAYLOR EXPANSION OF F'(A) ABOUT A = A*

We will examine the convergence speed of the Arimoto-
Blahut algorithm by the Taylor expansion of F'(A) about the

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

fixed point A = A*. The Taylor expansion of the function
F(A) = (F1(A),. .., Fy,(X\)) about A = A* is

FA)=FA") + (A= X")J(\)
+ %(/\ —AVHA) A =X) +o (A =X"?), 3D

where ‘A denotes the transpose of A, and o ([|A[|?) means
timyx—o 0 ([|A]1%) /IA]*= 0.
In (31), J(A*) is the Jacobian matrix of F'(X) at A = A*,

ie.,
)\_A*) il i=1,...m

)

T = (ax,

In this paper, we assume that the input probability distribu-
tion A is a row vector; thus, the Jacobian matrix J(A*) is

(32)

—1—
o0Fy 0F,,
T 2% A=2 O [ xzas
JA) = : : e R™X™,
Ll ol OF,,
O A=2* O | x=x-
(33)

i.e., OF;/0\i/|x=x~ is the (i’,4) component.
Lemma 3: Every row sum of J(A*) is equal to 0.
Proof: By (11), we have Z;il F;(X\) = 1; thus, by (32),
the lemma holds. [ ]

In 31), H(A*) = (Hy(X*),..., Hy (X)), where H;(A\*)
is the Hessian matrix of F;(A) at A = A*, i.e.,

) 0%F,
H(X) = <ax,ax~

and (A —A*)H(A*) {(XA —X\*) is an abbreviated expression of
the m dimensional row vector

(= AV HL A LA =A%),y A= A Hp (A E (A — A7) .

Remark 3: A1, ..., Ay, satisfy the constraint > " \; = 1,
but in (31),(32), (34) we consider A1, ..., A, as independent
(or constraint free) variables to have the Taylor series ap-
proximation (31). This approximation is justified as follows.
By the Kuhn-Tucker condition (4), D(P!||Q*) < C <
00, ¢ = 1,...,m; hence, by the assumption put below (1),
we have Q7 > 0,j = 1,...,n. See [2]. For € > 0, define
0 ={Q 2 Q1. Qu) € B Q - Q7l|< e}, i QF s
an open ball in R™ centered at Q* with radius e. Note that
Q € Q7 is free from the constraint 2?21 @; = 1. Taking

; (34)

)\=>\*>i’,i”=1,...,m

e > 0 sufficiently small, we can have ¢); > 0,7 = 1,...,n,
for any @ € QF. The function F'(A) is defined for A with
Qj = (A®); > 0,7 = 1,...,n, even if some \; < 0.

Therefore, the domain of definition of F'(A) can be extended
to =1 (Q) C R™, where &1 (QY) is the inverse image of
Q! by the mapping R™ > XA — A® € R™. &1 (Q7) is an
open neighborhood of A* in R™. Then, F'(A) is a function of
A=(A1,...,Am) € @71 (QF) as independent variables (free
from the constraint ZZ’;I Ai = 1). We can consider (31) to
be the Taylor expansion by independent variables A1, ..., Ay
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then, substituting A € A(X)N®~1(Q7) into (31), we obtain
the approximation for F'(A) about A = A*.

Now, substituting A = AY into (31) and using F(A*) = \*

and F(AYN) = AN*+1 we have
AVFL = X (AN =A%) TN
1
+ 5(AN = ADHAX) AN =) +o (|AY = X1)1?).
' (35)

Then, by substituting u’¥ = AN — X*, (35) becomes

l'l'N+1 :[J/NJ<A*) +
Then, we will investigate the convergence uN — 0, N = o0,
based on the Taylor expansion (36). Let uY = AN — A%,
1,...,m, denote the components of pu™ = AN — A\*; then
we can write u’V by components as /LN (uN ,...,um)
We have 1" uN =0, N =0,1,..., because > " AN =
YA =1

1
aNNH(A*)’fuN +o ([[&N]?). (36)

A. The Jacobian matrix J(\*)

Let us consider the Jacobian matrix J(A*). We are assuming
rank® = m in (12), hence m < n. We will calculate the
components (32) of J(A*).

Defining D; = D(P!|A®) and F; = F;(A),i=1,...,m,
we can write (11) as
el
F=-"1" i=1,...m (37)
> e
From (37), it follows that
m
Fi Y ApePr = NeP (38)

k=1
Then, differentiating both sides of (38) with respect to A;/, we
have

8F oD;
Ny’

(39)

D’“—&-Fa/\ Z)\keD’“—(?”e + \els

where 6;/; is the Kronecker delta.

Before substituting A = A* = (\},..., A¥)) into both sides
of (39), we define the following symbols. Remember that the
integer my was defined in (16). See also (25).

Let us define

Q =Q(\) =" (40)
ma

Q5 = Q(X\Y); Z)\*Pl ZAl Pij=1,....n,
(41)
Df = D(P||Q*),i=1,...,m, 42)

_OD; g

D5 ' =1 4
(A Z a)\ll )\:A*?Z7Z ? ?ma ( 3)
Fr=F(X),i=1,...,m (44)

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

6
Lemma 4: We have
Zx\keD’*‘ = ec, (45)
k=1 A==
8Di - P;/P; ’
= _ Jili=1,...,m, (46)
Oir — Q)
j=1 %
0 & Dy, D%, c
8/\‘/2)\]66 =e" —e”, i =1,...,m, 47)
" k=1 A=A*
EFr=X,i=1,...,m. (48)

Proof: Eq. (45) was proved in (18). Eq. (46) is proved
by a simple calculation. Eq. (47) is proved as follows.

,gﬂg

oD
5i/keDk + )\k@Dk k) |

A=x+ k=1 O A=A~
" PEPY
=eDi ¢ Z)\ - Z JQ*J
j=1 7
mi
_ eD;‘ Z Z )\*Pk
j=1 j k=1
DY _ C

(49)

Note that Q;‘ > 0,75 =1,...,n, from Remark 3. Eq. (48) is
the result of Lemma 2. |

Substituting the results of Lemma 4 into (39), we have

OF;
O/

e + N (e il — ec) = ;P —I—)\feD;D;‘,’i.
A=A+
(50

Consequently, we have

Theorem 1: The components of the Jacobian matrix J(A*)
are given as follows.

OF;

8)\i/ A=)\*

= eP1C (5 + NI} ) + AL (1 _ eD;‘,—C) ili e,
(51)

Siri + A7 (D s +1— ePi=C) i eI, ieT,
=< 0y, i €T, i€ I, (52)

ePi=C5,5, i € I, € Iny,
where the sets of indices Z, 7y, Z11, Ziip were defined in (24)-

(27). Note that D} = C for i € Iy UZy and A} = 0 for
1 € I U .
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B. Eigenvalues of the Jacobian matrix J(X\*)

From (52), we see that the Jacobian matrix J(A*) is of the
form

Jb O O
=+« s o |, (53)
s 0 Jm
JI = (aFi/a)\i/|)\:)\*)i7i/eZI E lexmla (54)
JII = (8Fl/a)\1, |)\:A* )i,iIGIH
= I (the identity matrix) € R™2*™2 (55)
M = (OF; /0N |x=av) s irezin
= diag (eDi*fC, i€ IHI) € Rmaxms, (56)

O denotes the all-zero matrix of appropriate size,
* denotes an appropriate matrix.

In (56), diag (eDf*C, 1€ IHI) denotes the diagonal matrix
with diagonal components eDf’C, i € Tiyp. Here, ePi—C <
1, ¢ € Zyy1 holds from type-III in (23).

Let {01,...,0,} = {0;]i € I} be the set of eigenvalues of
J(X*). By (53), the eigenvalues of J(A\*) are the eigenvalues
of JI, JU, and J" hence we can put

{6;|i € I1}: the set of eigenvalues of J!,

{6;|i € Ir1}: the set of eigenvalues of J'I,

{0;|i € Ti1}: the set of eigenvalues of J'I,

We will evaluate the eigenvalues of JE JI and JUI as
follows.

C. Eigenvalues of J"

First, we consider the eigenvalues of J'. Let J}, be the
(i’,i) component of JI, then by (52),

Jiy =06i + N Dy 4, i i € Ih. (57)

Let I € R™*™1 denote the identity matrix and define B =
I — J'. Let By be the (i,4) component of B. Then, from
(57),

Bij = —\/Dj; (58)
" P! P!
=\ I i€ T (59)
2 I

Let {B;|i € Z1} be the set of eigenvalues of B, then we
have 0; = 1 — f3;, i € Z;. To calculate the eigenvalues of B,
we will define the following matrices. Similar calculations are
performed in [21].

Let us define

Pl

D= : | eR™X, (60)
pm

n_pi' pi
= (-D;,)=(> L2 e R™X™ - (61)
’ Jj=1 Qj
i i€y
A =diag (A],..., Ay, ) € RmMXm, (62)
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Furthermore, define

VA = diag (VAL A, ) € BT (63)

Q=diag (Q)7",...,(Q5)7 ") e R™™, (64)

VA= diag ((QD) 72, (@) 72) e R (65)
Then, we have, by calculation,

VABVA | = VATVA (66)

= VAD,Q 1Dy 'VA (67)

= VA®VQ VO e, VA (68)

— VAD,VA f(ﬂélx/ﬁ) L (69)

From (16), v/A is a regular matrix and from the assumption
(12), rank ®; = m;. Therefore, by m; < m < n, we have
rank vVA®,v/Q = my, and thus from (69), VABVA © is
symmetric and positive definite. In particular, all the eigenval-
ues (1,...,Bm, of B are positive. Without loss of generality,
let 51 > ... > Bm, > 0. By (59), every component of B is
nonnegative and by Lemma 3, every row sum of B is equal
to 1. Hence, by the Perron-Frobenius theorem [10]

1=0512>2p2>...2 B >0. (70)
Because 0; =1 — 3;, i € 1, we have
0=0.<0,<...<6,, <1, (71)
therefore,
Theorem 2: The eigenvalues of J' satisfy
0<0,<1,i€T. (72)

D. Eigenvalues of J!

Second, we consider the eigenvalues of .J'!. From (53), (55),
we have
Theorem 3: The eigenvalues of J'! satisfy

0, =1,i € In. (73)

E. Eigenvalues of J

Third, we consider the eigenvalues of J™!. From (53), (56),
we have

Theorem 4: The eigenvalues of J'! are 0; = 7 =, Df <
C, 1 € Ty11, hence

0<0; < 1,4 € Inr. (74)

Remark 4: From the above consideration, we know that all
the eigenvalues of the Jacobian matrix J(A*) are real.
Lemma 5: If the eigenvalues of J' and J'! are distinct, i.e.,

0; # 0, i € Ir, 7' € T, (75)

then J(A*) is diagonalizable. In particular, if Zy;; = @, then
(75) holds, and thus J(A*) is diagonalizable.
Proof: See Appendix A. [ ]
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IV. ON THE EXPONENTIAL CONVERGENCE

We obtained in Theorems 2, 3, and 4 the evaluation for the
eigenvalues of J(A*). Let Oppax = max;ez 6; be the maximum
eigenvalue of J(A*), then by Theorems 2, 3, and 4, we have
0 < Omax < 1 if Zyy is empty, and 0, = 1 if Zyp is not
empty. First, we show that the convergence is exponential if
TIh1 is empty.

Theorem 5: Assume Zyp = (), then for any 0 with 0., <
0 < 1, there exist § > 0 and K > 0, such that for arbitrary
initial distribution A° with [|[A® — A*||< &, we have

=AY = Nl< K -(0)Y, N=0,1,...,  (76)
i.e., the convergence is exponential.
Proof: See Appendix B. ]

V. ON THE CONVERGENCE OF ORDER O(1/N)

We will consider the second-order recurrence formula ob-
tained by truncating the Taylor expansion of F(A) up to
the second-order term and analyze the convergence of order
O(1/N) of the sequence defined by the second-order recur-
rence formula.

A. The Hessian matrix H;(A*)

If 0 < Opax < 1, then the convergence speed of AN
A* is determined by the Jacobian matrix J(A*) because of
Theorem 5. However, if 0., = 1, the convergence speed is
not determined only by J(A*); hence, we must investigate the
Hessian matrix. In [2], [21], the Jacobian matrix is considered,
but the Hessian matrix is neglected in the literature.

Now, we will calculate the Hessian matrix

) 02F,
Hi(X) = (ax,am

of F;(X\) at A = A*. We have
Theorem 6: The components of the Hessian matrix
H;(X\*), i € Z, are given as follows.

N ONir | x_x-

= eD:fc{(sii/DZw + 6 DE g + N (Dfy Dig + Dir i)
+ (B + ADL) (1 P C)
+ (G + A D) (1= P00
2 (1) (1)

Y (eDi/_C Do + €2 =C D5+ Bir g — D;‘,’i,,),

ieZl (T

A=A+ > i i eT

(3
Y Ay
1,1,1 €1,

* —
where D}, .. =

S N Dy o Di
In particular, if ¢ € Zy7, then A} = 0 by (23), and thus

02D, /0N ONi|a=x+ and Ey jn

0%F;
0Ny ONjrr A=
= 6“’// (1 — eD:’ic —+ D;,i') —+ (S“/ (1 — eDr”fc —+ D;i”)

(78)
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Further, if ¢ € Zj7 and D}, = C holds for all i’ € Z, then by
(78), we have

0%F;
8)\1'/8)\1'// A=A
Proof: See Appendix C. [ ]

= 6“”DZZ‘H + 04 DY

foy i €T (79)

B. Analysis of the convergence of order O(1/N)

We consider a recurrence formula obtained by truncating
the Taylor expansion (36) up to the second-order term and
write the variables as ¥ = (zd,..., zY). That is, we have

pN = NI + %ﬂNH (") . (80)
The recurrence formula (80) is called the second-order recur-
rence formula of the Taylor expansion (36). We investigate
the convergence speed of 1’ — 0. The convergence speed of
i’V — 0 seems to be the same as that of the original u”V — 0,
but the proof has not been obtained. Numerical comparison
will be done in Chapter VI. In this chapter, we will prove
that, if Zy; # (), there exists an initial vector ﬁo such that
@™ — 0 is the convergence of order O(1/N). Furthermore,
we will consider the condition that 2% — 0 is the convergence
of order O(1/N) for arbitrary initial vector iz°.

The convergence of order O(1/N) will be proved by the
following three steps.

Step 1: Represent fi)¥ with types-T and -IIT indices by i
with type-II indices.

Step 2: Obtain the recurrence formula satisfied by ¥ with
type-II indices.

Step 3: Prove that the convergence of i with type-II

indices is of order O(1/N) for some initial vector

al.

C. Step 1

Here, we consider the types-I and -III indices together.
Then, substitute Zy U Zy;p = {1,...,m'} and Z;; = {m’ +
1,...,m}. We have ma = m — m/ and |Zj1|= mso. The
purpose of step 1 is to represent fif'y; = (if, ..., fin,) by
Ay = (T grs - Fi)-

In the Jacobian matrix, by changing the order of J'! and
JM we have

Jb 0 O
JA) =« JU O (81)
x O JH
Then, by defining
, J' o
J =  JuL o (82)
we have
. J 0
J(A") = . g (83)
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The eigenvalues of J(A*) are 6;, i = 1,...,m, and then the
eigenvalues of J' are 6;, 1 =1,...,m' with 0 < 6; < 1, and
those of J! are §;, i =m/ +1,...,m with §; = 1.

Now, let a; be a right eigenvector of J(A*) for §; and define
A=(ay,...,a,) € R, (84)

Under the assumption (75), by choosing the eigenvectors
ai,...,a,, appropriately, we can make A a regular matrix.
In fact, because J(A*) is diagonalizable by Lemma 5, the
direct sum of all the eigenspaces spans the whole R™ (See
[19], p.161, Example 4).

Fori=m'+1,...,m, define
ith
v
e;=(0,...,0, 1, 0,...,0) e R™, (85)
i=m +1,...,m.
Then, because 6; = 1, we can take
a; =‘e;,i=m'+1,...,m. (86)
Therefore, we have
A= (ah...,am/,temurl,...,tem) (87)
a1 am’1 \
0
a1m/ Am!'m/’ :
= | . _______ ———— = - (88)
a1,m/+1 Am’ m/+1 | 1 0
. . | .
: : -
A1m Am'm ‘ 0 1
(A1 O
where
a11 Gm/1
A= -, (90)
A1m/’ Am/m/’
a1,m’+1 Am/ m’+1
Ay = (C2Y)]
A1m Am/'m

Because A is regular, A; is also regular by (89). J(\*) is
diagonalized by A, i.e., A=J(A*)A = O, where

o o 01 @)

_ 1 _ .

@_(O 1)791_ . 5
(0] O

0<0;,<1,i=1,...,m.

Using only the first-order term of the Taylor expansion (36),
we have

pN A = pN (A A (93)
= pv 48, (94)

thus, by p™ = ({1, 41 ), (94), and (89),
piAr 4y T Ay = (i Ar 4 piy A2) ©1. (95)
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Hence, if the second- and higher-order terms are negligible,
we have

u{\fmAl + uN Ay — 0 (exponentially), N — co.  (96)

To show that the second- and higher-order terms are negligible,
let us consider N +la; as a function of uNay,..., uNa, .
If the Taylor expansion (36) satisfies the condition that

uNtla; is divisible by pNa;, 97)

N+1

ie., if uVa; = 0 implies that uV+'a; = 0, then, we have

p"tla; = 0;pNa; (14 o(|pVa;il)), N — oo,

- /
i=1,...,m

(98)

)

and hence (96) holds. However, in general, (97) is difficult to
prove. We will show later in Examples 6 and 7 that (97) holds.

In what follows, we assume (96) and regard it as puf;; A1 +
pi) Az = 0. Then, we replace u™ by @™ to have faf Ar +
fiY A2 = 0 and hence

P = — i A2 AT (99)

The validity of (99) will be checked by numerical examples.
Step 1 is achieved by (99).

D. Step 2

The purpose of step 2 is to obtain a recurrence formula
satisfied by gV, i=m/ +1,...,m.

The i-th component of (80) for i =m' +1,...,m is

1
i = N H () (100)

i=m +1,...,m.
We will represent the second term on the right hand side of
(100) by @d.

Let H; ;;» be the (i,¢") component of the Hessian matrix
H;(X*). Then, by (78) of Theorem 6, we have

2F_
Hi i = _Oh
’ 8)\i18)\iu A=A
= i (1 —ePi=C 4 D;"Z—,) + Siir (1 —eP=C 4+ Di ),
(101)
i=m' +1,....m, i, i =1,...,m.
Here, for the simplicity of symbols, define
Sir=1-€eP7=C + D7, (102)
i=m' +1,....m,i =1,...,m.
Then, we can write (101) as
H; i = b4i Siir + 0iir Siinr - (103)

Further, Writing A1_1 = (C’i'i”)v i/,i// = 1,...,7’77,/, T =

P ’ . .
= w1 @irkCrkr Sikrs 1,7 = m’ +1,...,m, and 7y =
T + D}, 4, = m/ +1,...,m, we have the following
theorem.
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Theorem 7: {aN}, i = m’ +1,...,m, satisfies the recur-
rence formula

m
“N+1 _ =N | =N _N
B =yt Z Tiit fir
i=m/+1
i=m' +1,...,m.

(104)

Proof: See Appendix D. ]
Step 2 is achieved by (104).

E. Step 3

The purpose of step 3 is to prove that g — 0,i =
1,...,m, is the convergence of order O(1/N). We will define
the canonical form of the recurrence formula (104). Writing
R=(ri),i,i' =m'+1,...,m,and 1 = (1,...,1) e R™2,
we consider the equation R'c = —!1 for the variables
o= (0m'41,---,0m). Assuming that R is regular, we have

tg = —R7'1, (105)

and then we assume o > 0, i.e., 0; > 0,i =m' +1,...,m.
Further, by substituting

vN =N Jo i=m/ +1,...,m, (106)
PDiit = =T 04, i,i’:m/—i—l,...,m, (107)
the recurrence formula (104) becomes
m
VZ-NJFI :yiN —l/iN Zpiifz/ijy, (108)
ir=1
i=m' +1,...,m,

where p; = (Pim/+1,---,Pim) is a probability vector.
The recurrence formula (108) is called the canonical form
of (104).

For the analysis of (108), we prepare the following lemma.
Lemma 6: Let us define a positive sequence {v" }n—o.1...
by the recurrence formula

N =N (N N =0,1,.., (109)
0<’<1/2 (110)
Then, we have
lim NvV =1. (111)
N—o0
Proof: Since the function g(v) = v — v? satisfies

0 <g(v) <vfor0< v <1/2 wese 0 < Nt <
vN, N = 0,1,... by mathematical induction. Thus, 1> =
limy o0 vV > 0 exists, and by (109), v>®° = > — (1/00)2
holds. Then, we have v*>° = 0.

Next, by (109), we have

N-—1
1 1 1 1 1 1
N (w - w) =N Zl_o (,,m - w) (112)
N-—1
1 1
== > — (113)
_
N = 1—v

Applying the proposition that “the arithmetic mean of the first
n terms of a convergent sequence converges to the same limit
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as the original sequence” ([1], p.37, Exercise 2) to (113), we
have

. 1
]\}gnoo NuN _N—r>nool—I/N (114)
=1, (115)
which proves the lemma. [ ]
Lemma 7: For the sequence {v},i = m' +1,...,m,

defined by (108) with the initial values v? = 1/2, we have

lim Nv¥ =1, i=m'+1,...,m. (116)

N—o0
Proof: By mathematical induction, we see that fo, 41 =
. = v holds for N = 0,1,..., and thus (108) becomes
1/1.N+1 =V - (ViN)z, i =m' +1,...,m. Therefore, (116)
holds by Lemma 6. [ ]
Theorem 8: For (104) with the initial values ji{ = 0;/2, i =
m' +1,...,m, we have

lim NaY =0y, i=m/ +1,...,m. (117)
N—o0
Further, under the assumption (99), we have
lim NpY =—(0AA7"),, i=1,....m/, (118)
N—o00 g
where o, Aj, Ay were defined by (105), (91).
Proof: From v = i /o;, i = m' +1,...,m, and
Lemma 7, we obtain (117). Further, by (99), we obtain (118).
|

Step 3 is achieved by Theorem 8. Summarizing the above,
we have the following theorem.

Theorem 9: If type-II indices exist, then there exists an
initial vector 1° such that @ — 0 is the convergence of
order O(1/N).

Remark 5: In Theorem 9, we must choose a specific initial
vector j1°, but we want to prove it for an arbitrary initial vector.
If the existence of limy_, o N,ufv, 1 =1,...,m, is proved
for arbitrary f1°, then we have (117) and (118). However, the
analysis for the convergence speed of the recurrence formula
(104) for an arbitrary initial vector is very difficult, so it has
not been achieved. We will give a proof under the assumption
that a conjecture holds.

F. On the initial vector

In this section, we will investigate the convergence of (108)
for an arbitrary initial vector.

Now, for the sake of simplicity, we will change the in-
dices and symbols of the canonical form (108). Noting that

m — m' = mo, we change the indices from m’ +1,...,m to
1,...,mo, and define
& = vy, i=1,...,my, (119)
qii’ Epm'+i,’m'+i’7 i7i/ = 1)"'am27 (120)

which are just shifting the indices. By the above change, the
canonical form (108) becomes

ma
N+1 N N N
G =¢"—¢ ZQi’i’gi’azzla“wmQ,

/=1

(121)

where q; = (¢i1,- - -, ¢i,m,) € R™? is a probability vector.
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G. Diagonally dominant condition

For the probability vectors q;, i = 1,---,mo, we assume
ma
Gi > Y, Qi i=1l...ma (122)
V=1,i'#£i

This assumption means that the matrix made by arranging the
TOW Vectors qi, . . ., gm, vertically is diagonally dominant. We
call (122) the diagonally dominant condition. By numerical
calculation, we confirmed that (122) holds for all our exam-
ples.

H. Conjecture

Our goal is to prove limy oo NEN = 1,0 = 1,...,ma,
for any initial vector £°. We found that we can prove this
if the following conjecture holds; however, the proof of this
conjecture has not yet been obtained.

Conjecture: By reordering the indices if necessary, there
exists an Ny such that the following inequalities hold.

&> > =), N> N,. (123)

Many numerical examples we observed seem to support this
conjecture.

We have

Theorem 10: We assume that the sequence defined by the
recurrence formula (121) satisfies (122) and (123). Then, for

arbitrary initial values with 0 < &) < 1/2,i=1,...,ma, we
have
lim NeV =1, i=1,...,ma. (124)
N—oc0
Proof: See Appendix E. [ |

L. Special cases where the conjecture holds

Now, we consider some special cases where the conjecture
(123) holds.

If my = 1, then the variable is only &Y, hence we do not
need to consider the inequality condition.

If mo = 2, the canonical form (121) becomes

M =gl —an (6) - angle, (29)
2T =8 — )€Y — qoo (Eév)z, (126)
q11 >0, g12 >0, q11 + q12 = 1, (127)
q21 >0, g22 > 0, g21 + g22 = 1. (128)
By calculation, we have
e = () = &) (1 — g€l — g2083") . (129)

By Lemma 12 in Appendix E, we have 1—q11&Y — o262 > 0
for any N = 0,1,.... Hence, if £} > €9, then &V > ¢V N =
0,1,.... Thus, the conjecture (123) holds with Ny = 0. Note
that, when moy = 2, the diagonally dominant condition (122)
is not necessary, because it is not used in the above proof.
In the case of mo > 3, this problem is very difficult. We
have a sufficient condition for (123) in the following lemma.

Lemma 8: For i/, consider ¢;;/, ¢ = 1,...,ms. Assume that
¢iv are equal for all ¢ except ¢/, ie., 1o = ... = gir—1,/ =
Qi'+1,i = --. = Qms,i’- Then, the conjecture (123) holds.
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Proof: By calculation, we have

N+1 N+1
1 =&

= -&) <1 — g€l — o2&l — Z(Iu'ﬁfy> . (130)
=3

The second factor on the right hand side of (130) is positive
for all N = 0,1,... by Lemma 12. Hence, if £ > £9, then
N > ¢V holds for N = 0,1,.... Similarly, by considering
any pair £V and £JY, we see that (123) holds. [ ]
Summarizing the above, we have

Theorem 11: Under the assumptions of Lemma 8 and the
diagonally dominant condition (122), the convergence of the
recurrence formula (121) is of order O(1/N) for arbitrary
initial vector £° = (£9,...,¢0,)) with 0 < & < 1/2,i =
1,...,mq, and

lim NN =1,i=1,...,ms.
N—oo

(131)

VI. NUMERICAL EVALUATION

Based on the analysis in the previous sections, we will
evaluate numerically the convergence speed of the Arimoto-
Blahut algorithm for several channel matrices.

In Examples 4 and 5 below, we will investigate the ex-
ponential convergence, where all the indices are of type-
I, in other words, the capacity-achieving A* is in A(X)°
(the interior of A(X)). In Example 5, we will discuss how
the convergence speed depends on the choice of the initial
distribution A°. Next, in Examples 6 and 7, we will consider
the convergence of order O(1/N). In these examples, there
exist type-II indices. It will be confirmed that the convergence
speed is accurately approximated by the values obtained in
Theorem 8. In Example 8, we will investigate the exponential
convergence, where all the indices are of type-I or -III, i.e.,
there exist no type-II indices.

Here, in the case of exponential convergence, we will
evaluate the values of the function

1

L(N) =~ log|s™|.

log||p (132)
Based on the results of Theorem 5, i.e., |V ||= [| AN — A*||<
K- (0)N, 0 = 00, we will compare L(N) for large N with
—log Omax (or other values).

On the other hand, in the case of the convergence of order
O(1/N), we will evaluate

Np™ = (Npuy's.. s Npg). (133)

We will compare Nu' for large N with the values obtained
in Theorem 8.

A. Exponential convergence where all the indices are of type-1

Example 4: Consider the channel matrix o) of (28), i.e.,

0.800 0.100 0.100
0.100 0.800 0.100 |,
0.250 0.250 0.500

») — (134)
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Fig. 5. Convergence of L(N) in Example 4 with initial distribution \° =

(1/3,1/3,1/3).

and an initial distribution A° = (1/3,1/3,1/3). We have

C = 0.323 [nat/symbol], (135)

A* =(0.431,0.431,0.138), (136)

Q" = (0.422,0.422,0.156), (137)
0.308 —0.191 -0.117

JA)=1| -0.191 0.308 —0.117 (138)
—0.369 —0.369 0.738

By (136), we see that A7 > 0,3 > 0,3 > 0, thus all the
indices are of type-I.

The eigenvalues of J(A*) are (6,62, 65) = (0.000,0.500,
0.855). Then, O, = 03 = 0.855. We have, for N = 500,

L(500) = 0.161 = —log Oppax = 0.157. (139)

We can see from Fig. 5 that L(N) for large N is accurately
approximated by the value — log ;ax.
Example 5: Let us consider another channel matrix. Define

0.793 0.196 0.011

@ = 10196 0.793 0.011 (140)
0.250 0.250 0.500
We have
C = 0.294 [nat/symbol], (141)
A* = (0.352,0.352,0.296), (142)
Q* = (0.422,0.422,0.156), (143)
0.443 —0.260 —0.183
JA*) = -0260 0443 —0.183 (144)
—0.218 —0.218 0.436

By (142), we see that all the indices are of type-I.

The eigenvalues of J(A*) are (6;,62,63) = (0.000,0.618,
0.702). Then, 6y,ax = 03 = 0.702. Write the second largest
eigenvalue as Oy, then Oyec = 03 = 0.618.

We show in Fig. 6 the graph of L(V) with initial distribution
A} = (1/3,1/3,1/3) by the solid line, and the graph with
initial distribution Ay = (1/2,1/3,1/6) by the dotted line.
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Fig. 6. Convergence of L(N) in Example 5 with initial distribution }\(1) =
(1/3,1/3,1/3) and A3 = (1/2,1/3,1/6).

The larger L(N) is, the faster the convergence, hence the
convergence with A} is faster than with A9. The convergence
speed varies depending on the choice of the initial distribution.
What kind of initial distribution yields faster convergence? We
will investigate this question below.

Let us define

1 = A0 — A* = (-0.019, —0.019, 0.038),
uy = A9 — A* = (0.148, —0.019, —0.129).

(145)
(146)

We will execute the following calculation by assuming
pNtl = N J(A*), N =0,1,... holds exactly.

Here, we will investigate for general m, n. We assume (75).
Let by,ax be the left eigenvector of J(A*) for 6.y, and let
bﬂ;lax be the orthogonal complement of by, i.e., bf;lax =
{peR™| B bmax = 0}.

Lemma 9: If

uNebt N=01,...,

max’

(147)

then for any 6 with Osc < 6 < 1, we have |[pu?V|< K -
O, K>0,N=0,1,....
Proof: See Appendix F. [ ]
Because O < Omax, if (147) holds, then the convergence
speed is faster than 6,,,,, by Lemma 9. The next lemma gives
a necessary and sufficient condition that guarantees (147).
Lemma 10: puJ(X*) € b, holds for any p € b, if and
only if by, is a right eigenvector for 0,,.y.
Proof: See Appendix G. |

If 'b,,,0y is a right eigenvector, then by Lemma 10, any u° €
b yields (147), hence the convergence becomes faster.

Now, we will evaluate the convergence speed for the initial
vectors (145) and (146). For J(A*) of (144), Oyax = 0.702
and 6s.. = 0.618. The left eigenvector for O,y 1S bpax =
(—0.500, 0.500,0.000). We can confirm that ‘b, is a right
eigenvector for 6, and H(1) by = 0, thus by Lemmas 9
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and 10, we have limy_ oo L(N) = —log6sec. Then, by the
solid line in Fig. 6, we have, for N = 500,

L(500) = 0.489 = — log fsec = 0.481. (148)

On the other hand, we have ug 'brax # 0, thus by Lemma
10, we have lim o L(N) = — 10g 6,,ax- Then, by the dotted
line, we have, for N = 500,

L(500) = 0.360 = — log Omax = 0.353. (149)

Checking Example 4 in this way, we can see that by, =
(—0.431,—-0.431,0.862) is a left eigenvector for Opax =
0.855, but *by,ay is not a right eigenvector. Thus, by Lemma
10, we have limy 00 L(N) = —log Oax and (139).

B. Convergence of order O(1/N)

In the case of the convergence of order O(1/N), there exist
type-1I indices.
Example 6: Consider the channel matrix ®2) of 29), i.e.,

0.800 0.100 0.100
0.100 0.800 0.100 |,
0.300 0.300 0.400

d? = (150)

and an initial distribution A° = (1/3,1/3,1/3). We have

C = 0.310 [nat/symbol], (151)
A* = (0.500, 0.500,0.000), (152)
Q" = (0.450,0.450,0.100), (153)
D7, = —1.544, D] 5 = —0.456, D] 3 = —1, (154)
D3y =—-1544, D3 3 = —1, D3 3 = =2, (155)
L+ A D7, A5 DT 5 0
J(A*) = A1D3 1+AD5, 0 (156)
AMD3 4 A3Dz, 1
0.228 —0.228 0.000
= | —0.228 0.228 0.000 (157)
—0.500 —0.500 1.000
By (152) and (153), we see that \j = 0 and C =

D(PY|Q*) = D(P?||Q*) = D(P3||Q*), hence, i = 3 is a
type-II index.

The eigenvalues of J(A*) are (61,65,63) = (0.000,0.456,
1.000).

1 1 0
A=[1 -1 o], (158)
1 0 1
11
Av=(] ) 4=(10). (159)

By (159), the eigenvectors a; for 6; = 0 and ay for 65 =
0.456 are

1 1
ar=|1],a=[-1 (160)
1 0

We will prove (97). First, for a1, MNHal = uNal = 0, thus

(97) is trivial. Next, for a,, we will prove that uN tlay, =

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

PV — Y s divisible by pNag = pf — pd. In fact, by

Al = A3 we have

TEAREITTARE D FALED VAR (161)
= F(AN) — B,(AY) (162)
A exp D(PHAN®) — M) exp D(P?| AN @) (163)

3
D A exp D(PF|AN @)
k=1

If we substitute A = AJ in (163), we have by calculation,

M{V‘H — ué\”l = 0. Because )\{V = )\év is equivalent to u{v =
ud, we see that ufY — 2 = 0 implies /L{VH - /~L§V+1 =0,

thus (97) holds, and then we can consider (99).

For ﬁfYHI = (B, 55), mfy = (@), we have ﬁf\,fln =
—pN Ay AT by (99), hence

m = ny =—(1/2)i3. (164)
Further, the Hessian matrix H3(\*) is
0 0 D3,
Hs(\*) = 0 0 D3, (165)
D3, D3, 2D33
0.000 0.000 —1.000
= 0.000 0.000 —1.000 |, (166)
—1.000 —1.000 —4.000
then, we have by (164),
LAVt N = — (a))? 167
AN Hs' " = — ()" (167)
and the second-order recurrence formula
_ _ N2
=y () (168)

By Lemma 6 and (164), we have limy .., NpY =
L, Hmy oo Nt = limy oo N = —1/2.
By the numerical simulation, N/.LN for N = 500 is

Nup® = (-0.510,-0.510, 1.019)
= lim NgV = (-1/2,-1/2,1).

N —o0

(169)
(170)

See Fig. 7. We can confirm that N for large N is near the
values obtained in Theorem 8.

Example 7: Consider a channel matrix

06 01 01 01 01
01 06 01 01 01

O =|s s ¢t 01 01], 171)
S s 01 t 0.1
S s 01 0.1 ¢
where s =0.238,t =0.324, (2s+t+0.2=1), (172)
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Fig. 7. Convergence of Nufv in Example 6.

and an initial distribution A = (1/5,1/5,1/5,1/5,1/5). For
this ®©), we have

C' = 0.198 [nat/symbol], (173)
A* =(0.5,0.5, 0, 0, 0), (174)
Q" =(0.35, 0.35, 0.1, 0.1, 0.1), (175)
Dy, =-19/14, D 5, = =9/14, Di 3 = —1,
DTA =-1, DT,5 = -1, (176)
D;,z = _19/147 D§,3 =-1, D§,4 =-1,
D55 = -1, 177)
D33 =-1576 = —a, D3, = —1.072 = -4,
D35 =P, (178)
DZ,4 =~ DZ,5 = _B7 D;,5 = —Q, (179)
9/28 —9/28 0 0 0
—-9/28 9/28 0 0 0
JAX)=| -1/2 -1/2 1 0 0 (180)
-1/2 -1/2 0 1 0
-1/2 —-1/2 0 0 1
By (174) and (175), we see that A3 = A} = Af = 0 and
C = D(P'|Q*) = ... = D(P%||Q*), thus i = 3,4,5 are

type-1I indices.
The eigenvalues of J(A*) are
(0,9/14,1,1,1) and

(91702;03794795) =

1 1 00 0
1 -1 00 0
A=|1 0 10 0], (181)
1 0 010
1 0 00 1
_ 10
A1:(1 _1),,42: 10 (182)
10

We can prove (97) in a similar way as in Example 6.
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For a1y = (A7, i3'), A = (B8, iy, A3'), we have
1 = —if) A2 AT by (99), hence

m = ny = (g + ) +ag)/2. (183)
Further, the Hessian matrix Hs(A*) is
0 0 -1 0 0
0 0 -1 0 0
HsA)=|-1 -1 =20 -8 -8, (84
0 0 -8 0 0
0 0 -8 0 0

where « and 3 were defined in (178). Then, we have by (183)

1
SAYHs(A) BN = —(a = 1) ()" = (8 - D Y
—(B-1)ps iy (185)
Similarly,
1
SANH(A) N = —(8 = D — (a = 1) ()

(
1
SAN Hs(N) BN = —(8 = D' — (8 = 1)d 5]

Therefore, by substituting o/ = a — 1, 8/ = 8 — 1, we have

N = Y o () - BN Y - B, (188)
vt = - BN R - o () - B, (189)
P = B EY - AN EY o (1Y) (190)
From (105), we have o = (03,04,05) = (1.389,1.389,

1.389), so the canonical form for (188), (189), (190) is

N =0 0.8 () — 0. — 0.1, (191)
N = oY — 0. — 0.8 () — 0.1, (192)
vV =l 01l — 0w v — 0.8 (l/év)g. (193)

Egs. (191), (192), (193) satistfy the assumptions of Lemma
8 and the diagonally dominant condition (122). Then, by
Theorem 11, they converge for arbitrary initial values and

lim NvN =1,i=3,4,5. (194)
N—oo
Therefore, by (106)
lim NaY =o; =1.389, i = 3,4,5, (195)
N—o0
and by (183),
lim Nal = —303/2 = —2.083,i = 1,2. (196)
N—oo

We will show in Fig. 8 the comparison of the numerical
results and the values of (195), (196).
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Fig. 8. Convergence of Nufv in Example 7.

C. Exponential convergence where indices of types-I1 and -111
exist

Example 8: Consider the channel matrix ®®) of (30)

0.800 0.100 0.100
0.100 0.800 0.100 |,
0.350 0.350 0.300

and an initial distribution A° = (1/3,1/3,1/3). We have

PG = (197)

C = 0.310 [nat/symbol], (198)

A* = (0.500, 0.500, 0.000), (199)

Q" = (0.450,0.450,0.100), (200)
0.228 —0.228 0.000

JA*)= | —0.228 0.228  0.000 (201)
—0.428 —0.428 0.856

By (199) and (200), we see that A7 > 0,5 > 0,3 = 0 and
C = D(PY|Q*) = D(P?||Q*) > D(P?||Q). thus i = 1,2
are type-I indices, and 7 = 3 is a type-III index.

The eigenvalues of J(A*) are (61,62, 65) = (0.000,0.456,
0.856). Then, O,.x = 03 = 0.856. We have for N = 500

L(500) = 0.159 = —log Oax = 0.155. (202)

See Fig. 9.

Extending this result, we have the following lemma.

Lemma 11: Assume that type-II indices do not exist and
Omax = max;ezy, 0;, i.e., the maximum eigenvalue of J(\*)
is achieved in JY. Then, the convergence speed does not
depend on the choice of initial distribution. In other words,
limpy 00 L(N) = —log Omax holds for arbitrary initial distri-
bution, hence the convergence speed cannot be increased any
more.

Proof: Let 00 = 6+, 1" € Z1. We have 6 > 0
by Theorem 4. J'! is diagonal by (56), thus we can take
i*th

v
te;« = Y0,...,0, 1, 0,...,0) as a right eigenvector for
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Fig. 9. Convergence of L(N) in Example 8 with initial distribution A0 =

(1/3,1/3,1/3).

0;~. However, e;- is not a left eigenvector for 6;-. In fact,
since every row sum of J(A*) is 0 by Lemma 3, putting 1 =
(1,...,1) € R™, we have J(A*)!1 = 0. If e; were a left
eigenvector for 0+, then 0 = e; J(A*)!1 = O;x e+t = ;- >
0, which is a contradiction. Therefore, by Lemmas 9 and 10,
the convergence speed does not depend on the choice of initial
distribution and limy o0 L(N) = —1og Opnax- [ |

VII. CONVERGENCE SPEED OF [(AN, @) — C

Based on the results obtained so far, we will consider the
convergence speed that the mutual information I(AY, ®) tends
to C as N — co. We will show that if Zyp = 0 and AN — \*
is the convergence of order O(1/N), then I(AN,®) — C is
of order O(1/N?). Including this fact, we have the following
theorem.

Theorem 12: Let Iy = 0.

If [N )< K1 (0)N,0 < bpax <0 <1, Ky >0, N =

0,1,..., then
0<C—IAN,®) < Ky-(0)*", (203)
Ky>0,N=0,1,....
Meanwhile, if limpy_, NIMN =0;#0,i=1,...,m, then
1 n 1 m 2
. 2 N _ pi
Jim N (C - I, @) = o Z; o (2@1) :
J= i=
(204)

Next, let Zqir 7é 0.
If [N )< K1+ ()N, 0 < bax <0 <1, Ky >0, N =
0,1,..., then
0<C—IAN,®) < Ky- ()Y,
Ky >0,N=0,1,....

(205)
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Meanwhile, if limy oo Nul =0; #0,i=1,...,m, then
0<C—I\,®) < K/N, (206)
K>0, N=0,1,....
Proof: See Appendix H. ]

We will show in the following tables the evaluation of the
convergence speed of I(AN, ®(*)) — C for k = 1,2, 3, where
M, d@ and &) were defined in Examples 1, 2, and 3,
and examined in Examples 4, 6, and 8, respectively.

TABLE 1
CONVERGENCE SPEED OF I(AN &) — C.

0.324
0.313

—(1/N)log (C — I(AN, M) |\ _s00
—21og Opax

TABLE II
CONVERGENCE SPEED OF [(AN, ®(2)) — (.

0.516
0.500

N2 (C B I()‘N7 (I)(Q))) |N:500
Eq. (204)

TABLE III
CONVERGENCE SPEED OF I(AN, () — (.

0.163
0.155

—(1/N)log (C — I(AN,&®))) |\ 00
— log Omax

We can see from these tables that the convergence speed of
I (AN,®) — C is accurately approximated by the results of
Theorem 12.

VIII. CONCLUSION

In this paper, we investigated the convergence speed of
the Arimoto-Blahut algorithm. We showed that the capacity-
achieving input distribution A* is the fixed point of F'(A) and
analyzed the convergence speed by the Taylor expansion of
F(A) about A = A*. We concretely calculated the Jacobian
matrix J of the first-order term of the Taylor expansion and
the Hessian matrix H of the second-order term. The analysis
of the convergence speed by the Hessian matrix H was done
for the first time in this paper.

We showed that if type-II indices do not exist, then the
convergence of AV — A\* is exponential, and if type-II indices
exist, then the convergence of the second-order recurrence
formula obtained by truncating the Taylor expansion is of
order O(1/N) for some initial vector. Further, we considered
the condition for the convergence of order O(1/N) for an
arbitrary initial vector. Next, we considered the convergence
speed of I(AN,®) — C and showed that the type-III indices
concern the convergence speed. In particular, if there exist

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

no type-III indices and A — X* is of order O(1/N), then
IAN,®) — Cis O(1/N?).

Based on these analyses, the convergence speeds for several
channel matrices were numerically evaluated. As a result, it
was confirmed that the convergence speed of the Arimoto-
Blahut algorithm is accurately approximated by the values
obtained by our theorems.

In this paper and in [2], [21], the capacity-achieving A* is
used to analyze the convergence speed of the sequence {AN}.
Using the limit vector is a common method for the analysis
of the convergence speed. For example, see [9], Proposition
4.4. However, A* is not known before it is calculated by
the Arimoto-Blahut algorithm, etc. Determining whether the
convergence speed is fast or slow by a simple calculation from
the channel matrix ® without using A* would be effective, so
we would like to consider finding this condition as a future
work.
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APPENDIX A
PROOF OF LEMMA 5

Since \/KB \/K71 is symmetric by (69), it is diagonalizable,
hence J! is diagonalizable because J' = I — B. Therefore,
there exists a regular matrix II € R™*™1 with

-1J = 0, (207)
where O is a diagonal matrix whose diagonal components are
the eigenvalues of J, i.e., ©, = diag(f;, i € I;) € Rm*m1,
We can write it by components as ©1 = (0;0;/;), i',1 € ;.

Next, let ©2 be a diagonal matrix whose diagonal com-
ponents are the eigenvalues of JIT and JM je., O, =
diag(f;, i € Iy U Trpp) € ROmztms)x(matms) wWe have
O, = (91(52/1) , i/7i € Iy1 U Zypp. Then, by (53), we have

X J' o
=4 &)
where U € R(m2+ms)Xmi1 g an appropriate matrix.

Now, we will prove that there exists a unique matrix V' €
R(m2Fma)xm1 that satisfies

(208)

Ve, -0,V =UIL (209)

Define the components of V by V' = (vyr;), i’ € IiUZq, @ €
7Zi. Then,
©1); = Y viklidri = viibl, (210)
kely
i' € In U, i € 1o,
(©2V)ys = Y Birbrirvni = viribyr, (211
k€U
= Tn UIHI, i€ 1.
Further, defining the components of UIL by UIL = (u}};) , i’ €

It U I, ¢ € 1, both sides of (209) are represented by
components as

(Gi—ei/)vil—u,

(R

i’ e ITnUZng, t € 1y. 212)

By Theorem 2, the eigenvalues of J! are less than 1, hence
different from the eigenvalues 1 of J'I. Further, 6; # 6;/, i €
11, i € Iipp by the assumption (75), so we have

II

ull, .
i € In U, i € I,
91‘ — 01"

(213)

Virg =

which shows the existence and uniqueness of V &
R(m2+ms)xmi that satisfies (209).
Now, define

T — Ir o mxm

II= (V I) eR . (214)
Then, by noting (207), (208), (209), we have

_ ~ 0, O

1 * _ 1
M JA)II = (O @2) , (215)

which proves the lemma.
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APPENDIX B
PROOF OF THEOREM 5

Consider the line segment with the starting point A* and the
end point AN e,

A =1 —t)X +eAN, 0<t < 1. (216)

The components of (216) are \;(t) = (1 — t)A; + AN, i =

1,...,m. Let us define
f®) = F(A(t)) € A(X) 217
and write its components as f(t) = (f1(¢),..., fm(t)). We
have
dfz -
= z:: dt 8&/ N (218)
S aF
= (219)
z:: oy A=A(t)
= (AN =X)J(A(@1),,i=1,...,m,  (220)
thus
dfd—(tt) = (AN = XHT(A(@)). (221)

Now, by the relation between the matrix norm and the
maximum eigenvalue [10], p.347, Lemma 5.6.10, for e = 6 —
Omax > 0, there exists a vector norm |-||' in R™ whose
associated matrix norm ||-||’ satisfies

Omax < [T A< Omax + €. (222)

(Note that ' does not denote the derivative.) By the con-
tinuity of norm, for any e; with 0 < €1 < Opax + € —
[[T(A*)]|’, there exists ¢’ > 0 such that if ||A — A*[|'<
o', then [||J(N)|)/=||JA)]' | < €1, especially, ||J(A)|'<
[T (A*)]|'+€1. Thus,

[T < 1T +Omax + € = [[T(A)
=0<1.

(223)
(224)

By the mean value theorem, there exists ¢ € [0, 1], which

satisfies

NN = PO ) @25)
=[f(1) = f(0 )H (226)
H (1-0) (227)
t=tN

= |I( AN A)TAE)DN" (by (221))
(228)
< AN =X T E)” (229)
Here, if |[AY — A*|'< ¢, then we have |J(AN)|'<

0 < 1 by (224), so |ANTL — X*|'< &’ by (229). Thus, by
mathematical induction, if the initial distribution A° satisfies
[A® — X*|'< &', then ||[AN — A*|'< &' for all N, and so
[JAN)|'< 6 < 1 by (224).
Therefore, by (224), (229), ||AN+! —
< ONFLIXY — A7, so we have

I = X< (@) IAT = X7

A< AN = X*|'<

N=0,1,.... (230)
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By the equivalence of norms in the finite dimensional vector
space [10],[18], we can change the norm from ||-||" to the
Euclidean norm ||-|| to have

AN =X < K-, K>0,N=0,1,.... (231)
APPENDIX C
PROOF OF THEOREM 6 (CALCULATION OF HESSIAN

MATRIX H;(A*))

We will calculate the Hessian matrix H;(A*) of F;(\) at
A:A* ie H( ) (82F/5)\ a)\l//b‘ A*)'

Differentiating both sides of (39) with respect to \;», we
have

OF; 0 &
Dy, v Dy,
ot L G e
At Y | * k:—l*[),
OF; 0 & 2 &
: Ae€F 4 Fym—— Y Ape®
o O Z R W ; ke

*4

b, 0D; OD;

oD oD
D; D; ? .
+ 6741//6 + )\Ze a)\i” a)\l/

5'/\1// Oy
0?D;

6)\1/ 8)w '

On the left hand side of (232), part x1 is evaluated at A = A\*

by (45). Part %2 is the component of the Jacobian matrix which

is evaluated by (51). Part %3 is evaluated by (47). Part x4 is
evaluated as follows. We have

a)\la;)\”ZAkGDk< +Z)\ eDkaDk>

=i’

+ N\l (232)

0, 0Dy & Dy, 0Dy, 9Dy
=eP B} Z: <5mn6 —|— i€ O DN
92D
A O )
oD! 0Dy <. . ODg D,
_ Dy i D//il
= o ¢ Z R O O
92D,

Mgl
+Z e N O
*5

and part x5 becomes, at A = A%,

6 D my n Psz’Pz”
Z’\keDka/\ a)]: :ecz/\ZZ%
il " A 1 = (Q])
n Pz Pz mi )\*Pk
c
=e
Z o Z o
= —ecDi,’i,,. (234)
Therefore, part x4 becomes, at A = A*,
872 zm: )\k@Dk = eD:(/D i + e ‘”D il i
8)\2'/8)\7;//
k=1 A=~
ma
+€9> NiD} D — €€ Dj . (235)

k=1

Oy O
= eDzic{(SM/DZi// + (;ii”D;i/ =+ )\;k ( z’Dz i + DZ il z//)

We have S;;; = D*

Let us define D}, ;v = 9°D;/0NyONin|a=r- and Ey v =
S A:D; . Df
have

Then, based on the above calculation, we

kil

0*F;
C

6)\7;/ 6)w A=A

+ {eDf “C(Giar + NI D) + AL (1 - eD?—C)}

X (eDi“ - ec>
7))

n {eD?—C (S + A D) + X (1 -
+F* (6 uDl R +€ ’”D* i +6 E,L/ il — € Dz 1”)

X (eDﬂ — ec)

1D il +5ii//e i il/+)\* Dl D*Z,D*Z”
+ AP Dr (236)

= djire

By rearranging this equation, we obtain, using (48) of Lemma

O?F;

A=A*

+ (6 + A1 D} ) (1 _ eD;*,,fc>

+ (S + XDy} (1= ePiC) |
2y (1270) (-5
-\ (eD:'_CD;,W +e j,,—CD;J_” By — D

il i)

(237)

APPENDIX D
PROOF OF STEP2

Fori=m'+1,...,m,let H; ;;» be the (¢,i") component
of the Hessian matrix H;(A*). Then, by Theorem 6,
2
H; i = % .
= S (1 —ePv=C¢ 1 D 1/> + 8ipr (1 —ePin=C 4 D Z,,) ,
(238)
i=m' +1,....m,¢,i" =1,...,m.
Here, for the simplicity of symbols, define
Siw=1—€Pv"C 4+ D7 i =1,....m, (239)
then (238) becomes
Hiirin = 643 Sizr + 0iir Siirr - (240)

for 7/ = m' +1,...,m, then by (240),

1,3/

the Hessian matrix H;(A*) is given by (241)-(245).

Therefore, by (99),

1 N ~ 1, N - O H} ('

- H’L A* t=N _ — N N IHI
2# (A") ' B) (NI,IH»HH) tHl H2 ﬁz\lr
iy

1l N 1oy (O HY (AT 1tA2
= 5 (*I*LH A2A1 7“11) (tHl H2 /«LH

1 _
- §p{¥ (—As AT H! —'H} AT Ay + HE) gy . (246)
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| 0 Sit 0 0
9 l :
| 0 Sim 0 0
0 0 0 Dipsyr 0 .. 0
. I .
H;(\*) = Do : (241)
0 0, 0 D}y 0 ... 0
Si1 Sim : D;,, +1 Df,iq 2D;i D;,i+1 ‘D;m
0 0 | 0 D}y 0 0
o :
D :
0 ... 0! 0 D; .. 0 0
O H!
where O € R™*™' | H! ¢ R™'*™2 H2 ¢ R™2*™2 and
H} = (60 Siwr), i’ =1,....m'i" =m’ +1,...,m, (243)
PHY = (80 Sign), i =m/ +1,... om,i" =1,....m/, (244)
H? = (6;in D}y + 0;D5n), i =m! +1,...,m. (245)
Now, define and
L= -1 1 mao Xma
Gi=-AAT'H! ¢ R , (247) riir = i + Dy, (256)

and A1_1 = ((ir¢). Further, let G, ;/;» be the (¢/,3") compo-

nent of G;. Then, by (247), we have

m/

G = — E itk H oo
kok/—1
7”/

= - E @ik Crk Oirr Siky
kok/—1

’
m

= —0y E @i 1 Cror Sk »
kki=1

A /
i, =m +1,...,m.

Define

’

m
— -/ !/
Cr’ii/ = - E ai’kckk/sik’, v =m +17"',m7

k,k'=1
then (250) becomes
Giirir = 0iin Ty
Thus, we have
Gi= (6 Tyr), 'Gi = (6:;0Tiin),
.

-/ / /
i, =m +1,...,m.

Hence, by (246),

2
Define

2

H;=G;+'G;+ H},

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

1 N 1 _
— NHi()\ )tuN = fuf\{ (Gi—&-tGi—i-H?) tuf\{.

and let I:Ii,i/i” be the (i’,4"") component of H;. Then, by (255),
(253), (245), and (256), we have

(248) .
Hiyrin = 84inTiir + 63t Tiirr + (8ii Df yr + 830 D ) (257)
= b0 (T + Diy) + 6 (Tin + Dian)  (258)
(249) = 5“‘//7"2'2'/ + (Sii/’l"ii//. (259)
Therefore, (254) becomes
(250)
1 et 1 nvay o
A HiN) = oy Hy (260)
R N
== > alHipepl (261)
it,i" =m/+1
(251) 1
~2 Z B0 (8sirmisr + Sagrmiin) oy (262)
il i =m/+1
1 m ~ ~ m ~ ~
(252) =3 ( >oomdrap + Y Al TMN> (263)
=m'+1 i'=m’+1
(253) =@ Y k). (264)
i'=m'+1
Summarizing the above, the recurrence formula satisfied by
N i=m/+1,...,m, is
(254) m
p =N Yy > el (265)
'=m’+1
(255) i=m +1,...,m.
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APPENDIX E
PROOF OF THEOREM 10

We can prove Theorem 10 for any mo > 3, but because the
symbols become complicated, we will give a proof for the case
of my = 3. The proof for ms = 3 does not lose generality,
hence the extension to my > 3 is easy. We should prove the
following Theorem.

Theorem 10 (case of my = 3): Let us consider a sequence
{¢N},i=1,2,3, N=0,1,... defined by

3
glN‘H:gi\’_gi\'zq”,ngﬂi:lﬂ’&

=1
0<&)<1/2,i=1,2,3,

(266)

(267)

where q; = (qi1, ¢i2, ¢i3) is a probability vector.
Further, we assume the diagonally dominant condition
(122), i.e

3
Gi> Y, i, i=1,2,3 (268)
i'=1,i'#i
and the conjecture (123), i.e
& >& > &', N> N, (269)
Then, we have
lim N¢N¥ =1,i=1,2,3. (270)
N—oo
Lemma 12: 0 < ¢ < 1/2,i = 1,2,3, holds for N =

0,1,...

Proof: We prove by mathematical induction. For N = 0,
the assertion holds by (267). Assuming that the assertion holds
for N, by noting 1/2 < 1 —>.,_, ¢;#&) < 1, we have
0< et <1/2 (]

Lemma 13: The sequence {¢N}, N = 0,1,... is strictly
decreasing.

Proof: Because f{vfleH =¢N Zf,zl ¢iir€ > 0 holds

by Lemma 12. ]
Lemma 14: limy_, o EN =0,i=1,2,3.
Proof: £° =limy_ 0 &N > 0 exists by Lemmas 12 and

13. Then, £° = £° —£° >0, ¢:r&;° holds by (266), hence
we have £ = 0. u
Lemma 15: liminf o, NEN > 1.
Proof: By (269), for N > Ny,

3
Y=g - ) @71)
i'=1
3
&Y quel 272)
i'=1
2
=N — ()’ (273)
Now, we define a sequence {¢N}, N = 0,1,... by the
recurrence formula
& =¢&", (274)
. N2
NS (&) N=01 @9)
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Then, we will prove

G > ¢V, N=0,1,... (276)

by mathematical induction. For N = 0, (276) holds by the
assumption (274). Assume that (276) holds for N. Because
the function f(¢) = & — ¢2 is monotonically increasing in
0 < & < 1/2, by (273), we have ¢V tNott > ¢N+No
(ENTNoY2 > ¢N _ (£N)2 = £NFL: thus, (276) also holds for
N + 1. Therefore, lim ian_>OO Nfl > liminf y_ oo Nfl =
limpy o0 Nf{v = 1, where the last equality is because of
Lemma 6. [ ]
Lemma 16: limsup_, . N&Y < 1.

Proof By (269), for N > NO, we have £ = ¢V —

53 Zz/ 1 93 51/ < 53 53 Zzl 193085 = 53 (53) .

Now, we define a sequence {£X} by

53 o Q277
N2
N+1_§3 (ggy) N=0,1,.... (278)
Then, we can prove §N+N° < éév, N = 0,1,...

in a similar way as the proof of Lemma 15. There-
fore, we have limsupy_, . NEY < limsupy_,. NEY =
limpy 00 Néév = 1, where the last equality is because of
Lemma 6. [ ]

Lemma 17: Let ¥ = Z?,:l qill), ™ = Z?,:l qzir €l
Then, there exists a constant & > 0 with

=Ty > K(&Y &), N > N. (279)
Proof: We have
T Ty = Z Q&) Z gsir€ (280)
i'=1 i'=1
> i€l + g2l + 1388 — g1l — g8l — q3368
(281)
= (q11 — g31 — g32)&" — (33 — @12 — q13)€5 . N > Ny,
(282)

and g11 — 31 — ¢32 = ¢33 — q12 — q13 holds by q11 + q12 +
13 = q31 + @32 + q33 = 1. Deﬁning K=q1—q1—q32=
@33 — Q12 — q13, we have 7V — 7V > K (&N — ¢V). By the
assumption (268), we have q11 > 1/2, q12+q13 < 1/2, q33 >
1/2,q31 + q32 < 1/2, thus K > 0. [ ]
Lemma 18: 3% _ (& — &) < o0
Proof: We have

& gt g gu-

ST — 21 283

e s s e
51 TlN_TéV (284)

53 1_7'?{\[.

By (269), we have &V /¢ > 1, N > N, and by Lemma
17, iV = > K(&N - 53) K >0, N > Ny. Further, by
Lemma 12, we have 0 < 7V < 1/2, thus 1/(1 — V) > 1.
Therefore, by (284),

No N+1 N
?vo - x> K Z (& —¢&), N > N, (285)
3 3 I=No
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hence El]iNo (€} — €L) has an upper bound K —1(¢Mo /eho)
which is unrelated to N. Then, the sum is convergent. [ |

Here, we cite the following theorem.

Theorem B: ([5],p.31) Let {an}n=0,1,..., be a decreasing
positive sequence. If Z}’VO:O an 1s convergent, then Nay —
0, N — oc.

Lemma 19: The sequence {¢ — ¢V} is decreasing for N >

Np.
Proof: We have
gt =gl e un & - +¢f quz &
i’=1 i’=1
(286)
3 3
<& -V awnd -6+ wndl
ir=1 ir=1
(287)
=& - g+’ (288)
=& &' N> N, (289)
hence the assertion holds. [ |
Lemma 20: limy_,oo N(&N —€Y) =0
Proof: The assertion holds by Lemmas 18, 19, and
Theorem B. n
Summarizing the above, we have
Theorem 10 (case of mo = 3):
lim Nf =1,7=1,2,3.
N—o0
Proof: By Lemmas 16 and 20, we have
limsup NN = hm 1sup (N&Y — N&l + Nel)  (290)

N—o00

< hmsupN (ffv — fév) + lim sup N{é\’
N—oc0 N —oc0

(291)
<1, (292)
thus, together with Lemma 15, we have
lim N§1 =1. (293)
N —oo
Further, we have
lim N&lY = lim (N&Y — Nel¥ + Nel) (294)
N —o0 N—oo
=— lim N —&¥)+ lim N¢&Y  (295)
N—oo N—oo
=1. (296)

Finally, by (293), (296) and the squeeze theorem, we have
lim N&Y = 1. (297)
N —oc0
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APPENDIX F
PROOF OF LEMMA 9
Let 0 = 6, < < 01 < 0, < 1 be the
eigenvalues of J(A*). We have Opax = O, Osec = Om—1.

Let b;, i = 1,...,m, be the left eigenvector of J(A*) for
0;,i=1,...,m. We have by,x = b,,. Because of (75), we
can assume that {b;};=1,._,, forms a basis of R™. Suppose
pu € b, for N = 0,1,.... Then, pV is uniquely
represented as

(298)

m—1
N N N
= E ¢; bi,c; €R
i=1

in the m — 1 dimensional subspace by, . By (298), we have

max*

pNT = pN () (299)
m—1

= N biI(\Y) (300)
i=1
m—1

= cNo;b;. (301)

=1

Nt — st N, and

Comparing the coefficients of u
(301), we have ¢ = 6;cN = ... = (GZ)N—H &,

1,...,m—1, thus pv = "1 (6,)" Ob,. Therefore,

7 =

-1

3

™ < > 0™ [D]]]bd] (302)
=1
<K (0m1)V, K>0 (303)
=K (fsee)” . (304)
APPENDIX G

PROOF OF LEMMA 10

Suppose that tb,,. is a right eigenvector for .. For any
b, (AN ) bmax = Omaxit!bmax = 0 holds. Thus, we
obtain pJ(A*) € b, ..

Conversely, suppose pJ(A*) € b, forany p € b . Our
goal is to show J(A*) by = Omax Bmax, Which is equivalent
to

1 (A brax = Omax it bax holds for any p. (305)
We will prove (305). Since we can write g uniquely as pu =
Kbyax + o with K € R and 1 € b, we have
/J’J(}‘*)tbmax = KbmaxJ(A*)tbmax + ﬂJ(A*)tbmax (306)
= K0maxbmax bmax +0 (by the assumption) (307)
- 0maXKbmaxtbmax + gmaxﬂtbmax (by I‘L 6 bmax) (308)

= 9maxﬂtbma)c7 (309)

which proves (305).
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APPENDIX H
PROOF OF THEOREM 12
Define QY = AV ®. Noting that /", A\iD(P'||Q*) = C
holds by the Kuhn-Tucker condition (4), we have

0<C—ION.8) =03 AN Pllog (2. %
i=1 j=1 Qa‘ Qj
(310)
=C - (A +ul) DPIQ) + D@QVIQY) (31D
=1
==Y ) DP'|Q*) + DQN Q). (312)
=1

We will evaluate D(QY||Q*) in (312). Defining RV = QN —
Q* with RY = QN —Q%,j=1,...,n, we have

DQYIQ) = > (@5 + ) log { 1+ 5 (313)
j=1 !
=ST@Q+RN) L — [ L) +o(IRV]P)
2@ g e
(314)
n n (RN)2 | (RN)2
= R;—V-i- (é*) -3 (ngg+o(||RN||2)
j=1 =1 I j=1 "
(315)
I em 1 (& i
=045 o ([ om P +o(leF).  G1e)
j=1 %7 \i=1

Let Zii1 = (). Then, we have D(P!|Q*) = C,i = 1,...,m.
By Z;Zl /J,fv = 0, the first term of (312) is 0. Therefore, if
N ||< K;- ()", then we obtain (203) by (316). Meanwhile,
if impy o0 Nufv = 0y, then we obtain (204) by (316).

Next, let Zii1 # 0. By (312), we have

C— I, @) < |u[DPQ) + O (IIe™]?) . 317
i=1

Therefore, if || ||< K1-(6)", then we obtain (205) by (317).
Meanwhile, if limy_soo IV ufv = 0y, then we obtain (206) by
(317).
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