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PAPER
Accurate Parallel Flow Monitoring for Loss Measurements∗

Kohei WATABE†a), Member, Norinosuke MURAI†, Shintaro HIRAKAWA†,
and Kenji NAKAGAWA†b), Nonmembers

SUMMARY End-to-end loss and delay are both fundamental metrics
in network performance evaluation, and accurate measurements for these
end-to-end metrics are one of the keys to keeping delay/loss-sensitive ap-
plications (e.g., audio/video conferencing, IP telephony, or telesurgery)
comfortable on networks. In our previous work [1], we proposed a parallel
flow monitoring method that can provide accurate active measurements of
end-to-end delay. In this method, delay samples of a target flow increase by
utilizing the observation results of other flows sharing the source/destination
with the target flow. In this paper, to improve accuracy of lossmeasurements,
we propose a loss measurement method by extending our delay measure-
ment method. Additionally, we improve the loss measurement method so
that it enables to fully utilize information of all flows including flows with
different source and destination. We evaluate the proposed method through
theoretical and simulation analyses. The evaluations show that the accuracy
of the proposed method is bounded by theoretical upper/lower bounds, and
it is confirmed that it reduces the error of loss rate estimations by 57.5% on
average.
key words: active measurement, packet loss, parallel measurement, probe
packet, QoS monitoring

1. Introduction

When we evaluate network performance, it is important to
accurately measure metrics along an end-to-end path. End-
to-end packet loss and delay are both fundamental met-
rics for network performance evaluations. Internet Service
Providers (ISPs) normally monitor these metrics to keep the
service levels of their networks. ISPs are under an obligation
to keep network performance in compliance with Service
Level Agreements (SLAs). Additionally, it is well known
that real-time applications including audio/video conferenc-
ing, IP telephony, and telesurgery are sensitive to end-to-
end packet loss and delay. Advanced SLAs which stipulate
metrics including delay/loss along an end-to-end path are
required for delay/loss-sensitive applications, though most
of current SLAs stipulate only packet loss of each link mon-
itored by a Management Information Base (MIB). Hence,
the accurate measurement of end-to-end metrics is impor-
tant for SLA monitoring, in order to provide advanced SLAs
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for delay/loss-sensitive applications.
It is valuable tomeasure the end-to-endmetrics on a net-

work without relying on the information inside the network
such asMIB. Ifwe are interested in end-to-endmetrics across
multiple ISPs, no one will have access to all the relevant net-
work equipment. From the viewpoint of network researchers
who do not have direct access to the network equipment, it
is useful to achieve the measurement only from the informa-
tion that can be accessed from the outside. In addition, it is
difficult to accurately estimate a fine-grained loss rate along
an end-to-end path due to the time synchronization problem.

In measurements of end-to-end metrics for networks,
an active measurement in which probe packets are injected
into a network is commonly used, and various measurement
tools for active measurements have been proposed in prior
works [3]–[8]. The literature details attempts to improve
measurement accuracy without increasing the number of
probe packets [9]–[11] since increasing the number of probe
packets leads to greater communication overheads and the
intrusiveness problem [8], [12]. In the modern Internet, a
large delay (that exceeds 150 [ms] as mentioned in ITU-T
Recommendation G.114 [13]) rarely occurs. Packet losses
are also rare events as ITU-T Recommendation Y.1541 [14]
definesQoS classwith upper bounds 1.0×10−5 of end-to-end
loss rate for emerging applications. It is difficult to capture
such rare events using a limited number of probe packets of a
single flow, even if active measurements are easy to perform.

While most of the prior works utilize only one probe
flow tomeasure the end-to-endmetric regarding one path, we
proposed a parallel flow monitoring method in which delay
on a flow is accurately measured by utilizing the observation
results of other flows sharing the source/destination [1], [8].
In daily operations, ISPs are monitoring end-to-end metrics
of themultiple paths on their network in parallel. Themethod
in [1] utilizes this parallel monitoring.

In this paper, based on the delay measurement method
in [1], we propose a loss measurement method that fully
utilizes flows, including flows with different sources and
destinations. We extend the delay measurement method to a
loss measurement with a weighted loss estimator. In the pro-
posed method, information regarding lost probe packets in
the other probe flows is utilized in estimating the loss rate on
a path of the target probe flow. As we mentioned above, it is
difficult to capture packet loss events by the limited number
of probe packets in a target probe flow since the packet losses
are rare events. Even if a target probe flow fails to capture loss
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events, the proposed method can estimate the loss statistics
on the path of the target probe flow since another probe flow
may capture loss events. Therefore, the proposed method
transcends a fundamental accuracy bound of conventional
active measurements of the loss statistics. The method and
network tomography are totally different from our method
because ourmethod estimates loss statistics along a path. To-
mography estimates link-level statistics from statistics along
a path. The proposed method does not compete with tomog-
raphy. This is because the statistics along a path can be used
as tomography inputs. By combining the proposed method
and tomography, it may be possible to improve the accuracy
of tomography. Additionally, we improve the accuracy of the
extended method by fully utilizing information of all flows
with a recursive conversion of the information of the other
flows. The proposed method utilizes the information of all
probe flows that share a part of the path with a target probe
flow though the method in [1] only utilizes information of
flows that has the same source/destination with a target probe
flows.

The proposed method is extremely versatile under mild
assumptions. The method does not require any internal in-
formation of a measured network, including the topology of
the measured network, and it only uses delay and loss of
each flow. Note that the method does not assume that all
possible paths in a network are simultaneously monitored.
It can appropriately perform when only a part of paths in a
network are monitored.

In summary, this paper makes the following contribu-
tions.

• Parallel loss measurements: We propose a parallel
monitoring method for packet loss. The method ex-
tends the delay measurement method that utilizes par-
allel active probe flows to a loss measurement, thereby
improving measurement accuracy of loss statistics.

• A recursive conversion technique: Our loss mea-
surement includes a novel technique called recursive
conversion that is different from the previous delay
measurement method [1] to improve accuracy in loss
measurements. The technique enables us to fully utilize
information of all probe flows for a measurement.

• Theoretical accuracy analysis: We provide a the-
oretical analysis of the accuracy of our method. The
upper and lower bounds of the accuracy of the method
are calculated.

• Simulation-based evaluations: We confirm that our
method provides accurate measurements through sim-
ulations. It is also confirmed that the simulation results
are consistent with analytical results.

The rest of the paper is organized as follows. First, we
mention a network model and assumptions in Sect. 2. Next,
Sect. 3 summarizes the parallel flow monitoring method for
a delaymeasurement in our previous study [1]. In Sect. 4, we
explain a proposed loss measurement method that fully uti-
lizes information regarding all flows in a network. In Sects. 5

and 6, we provide theoretical analysis and simulation-based
evaluation of the proposed method, respectively. After dis-
cussing some related works in Sect. 7, we conclude the paper
and mention future works in Sect 8.

2. A Network Model and Assumptions

Since the method we propose in this paper is based on the
method [1], most of the assumptions are inherited from [1]
to this paper. A wired network considered within the scope
of this work is represented by a directed graph. A packet is
delivered from a source to a destination along a path. Paths
are stable in a measurement period (generally within several
minutes) since paths are not changed frequently. Packets
are delayed and may be lost at nodes or links on a path.
We assume that an end-to-end delay consists of propagation
delay and queueing delay since both delays are dominant in
the modern Internet [15]. Propagation delay can be regarded
to be a constant for a path while queueing delay dynamically
changes reflecting traffic status.

In this paper, we assume that most of the loss events are
caused by buffer overflows in interfaces placed on links with
congestions. Inevitably, packet loss events highly depend on
queueing delay. We assume that links with large queueing
delay, i.e. links with many packet loss events, are sparse
among all links in a network, and the ratio of periods with
large queueing delay on a link to other periods is small. The
validity of the assumption can be confirmed since the average
link utilization of themodern Internet ismaintained low [16].
Note that we do not assume a congested link is unique, and
we do not need to know the topology of a network.

Though the metric we want to measure is loss statistics
along a path in wired packet networks, we utilize delay infor-
mation to improve accuracy of loss measurements. To mea-
sure packet loss and packet delay on paths, probe packets are
periodically injected for all or a part of paths on a network. A
delay or loss experienced by a probe packet can be obtained
by matching the packets at the source and the destination.
Generally, end-to-end delays on networks are the order of
milliseconds. If we want to accurately measure end-to-end
delays along with loss statistics, time synchronization on the
order of microseconds like GPS network time synchroniza-
tion is assumed on all senders and receivers. If we want to
measure only loss statistics, strict time synchronization is not
required. In our previous method [1], the time synchroniza-
tion lag is treated like a propagation delay and is subtracted
from the delay experienced by probe packets. Since sample
conversion/uniting is executed based on the queuing delay
that does not include the propagation delay and the time syn-
chronization lag, the lag does not deteriorate the accuracy of
the measurement.

3. Parallel Flow Monitoring for Delay

Since we assume sparseness of congested links, queueing de-
lay processes within a congestion period on multiple paths
that have common links frequently overlap (see Fig. 1), and
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Fig. 1 Overlap of queueing delay processes in a congestion period.

Fig. 2 Conversion of delay samples in congestion periods of multiple
flows whose start and end times are respectively almost the same.

the samples within the congestion periods can be converted.
In the method in [1], the ith sample for Flow A is expressed
by (tiA, x

i
A) where tiA and xiA denote injection time and ex-

perienced delay of the ith probe packet, respectively. A
congestion period is observed as consecutive samples that
are larger than a threshold xth. The set of samples within
the jth congestion periods on the path of Flow A is denoted
as XA, j . If there are congestion periods of multiple flows
whose start and end times are respectively almost the same
(i.e., they are closer than a constant probe interval δ), the
samples in the congestion periods are converted each other
as shown in Fig. 2. After the conversion, clustering process
starts. Delay samples in the congestion periods are format-
ted to n-dimensional vectors, and the vectors are divided
into clusters for each common link that causes a large delay
(Fig. 3). A clustering technique in machine learning is uti-
lized to divide them into clusters. A queueing delay process
captured by probe flows in the same cluster are determined
to be overlapped, and the delay samples are converted be-
tween each other, by modifying the injection time and delay
to that of the target flow. By the conversions, the number of
delay samples of each flow increases, thereby improving the
accuracy of the delay measurement.

Fig. 3 Clusters for each common link that causes a large delay.

4. Parallel Flow Monitoring for Loss Statistics

In this paper, we will extend the method of [1], which was
mentioned in Sect. 3, to a loss measurement and improve its
accuracy by utilizing information of all flows including flows
with different source and destination. By utilizing all flows,
the proposed method makes it possible to capture loss events
that occur with extremely low probability, such as 1.0×10−5

defined as the strictest QoS class in ITU-T Recommendation
Y.1541.

4.1 Extension to Loss Measurements

The proposed method achieves accurate loss measurements
by uniting samples of loss events. As with the method in [1],
the uniting in the proposedmethod is based on delay informa-
tion, though the metric we want to measure in the proposed
method is loss statistics. In the proposed method, samples
that capture loss events are recorded for each congestion
period, and samples are united each other at the time of con-
version of delay samples (Fig. 4). Since we assumed that the
main cause of packet loss is buffer overflows, most of packet
loss events occur within congestion periods. Therefore, we
can consider that loss events within a congestion period oc-
cur at the link which causes the congestion. First of all, a
set LA, j of samples of loss events between the first and last
samples in delay samples XA, j are recorded. A loss sample
in LA, j is defined as (tiA,∞) that corresponds to a lost probe
packet within the jth congestion period of Flow A. Based on
the method in [1], samples XA, j for delay are converted each
other, thereby obtaining samples XA, j which includes con-
verted samples. When the samples XB,k are converted to the
jth congestion period on the path of FlowA, samples LB,k of
loss events are united to samples LA, j of loss events within
the jth congestion period on the path of Flow A. As a result,
the samples LA, j which includes united samples within the
jth congestion period on the path of Flow A are updated to
LA, j ∪ LB,k . Note that XA, j and LA, j respectively include
converted and united samples from other flows while XA, j
and LA, j represent the original samples of Flow A.

Using delay samples XA, j and loss samples LA, j that
include converted/united samples, we can accurately obtain
various statistics regarding delay and loss. These samples
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Fig. 4 United samples of loss events.d

allow us to calculate not only the loss rate of packets for
each flow over the entire measurement period but also the
loss rate of any partial period in any granularity. By ex-
tracting a period when end-to-end delay exceeds a certain
threshold, it is possible to detect congestion that occurred in
an extremely short time. By calculating the loss rate within
the short congestion, we can analyze the loss rate in detail
for each individual congestion. Fine-grained measurement
causes difficult estimation of the loss along a path from the
link level measurement includingMIB. This is because delay
experienced by a packet before reaching each link is differ-
ent, so that a packet sent at time t is not associated with the
loss rate at time t on a link. In addition, even for long-term
measurements, packet loss events for each link are not in-
dependent, so it is not possible to simply calculate a loss
rate along a path. Moreover, it is noteworthy that the pro-
posed method simultaneously measures delay and loss along
a path. The obtained samples are also useful for analyzing
the relationship between delay and loss along a path. The
following is an example of an estimator of loss rate on each
path.

To provide an unbiased estimator of loss rate on each
path, samples should be weighted since the samples of loss
events in the proposed method are biased on a time-space,
while most of the conventional loss measurements using
active probes assume that probe packets are uniformly dis-
tributed. The weight ws of a sample s is given as

ws =
|XA, j ∪ LA, j |

|XA, j ∪ LA, j |
for s ∈ LA, j .

Then,∑
j

∑
s∈LA, j

ws

|XA | + |LA |

provides an estimator of loss rate on the path of Flow A,
where |XA | and |LA | denote the number of all delay samples
and loss samples of Flow A, respectively.

The communication overhead of the proposed method
is completely the same as the conventional method that mea-
sures delay and loss. The number of probe packets is not in-
creased by the proposed method. Both the proposed method
and the conventional method aim to measure loss statistics

on N paths by obtaining samples of N probe flows. The num-
ber of injected probes and the number of probes that pass
through each link are exactly the same. Both the proposed
and the conventional method gather information of probe
after a measurement from each endpoint to a measurement
server. Because we consider the situation that a measure-
ment server provides various packet-level statistics including
delay distribution, loss duration, and so on. The calculation
of these statistics requires packet-level delay/loss informa-
tion. The communication overhead for the gathering process
is common for both methods, and it is small compared to
the overhead of probe packets. For example, each endpoint
sends just 1 packet for the gathering process per 100 probe
packets. The number of packets for the gathering process is
proportional to the number of probe packets. Namely, less
number of probe packets also reduces the number of packets
for the gathering process.

The computational complexity of the proposed method
is the same as the method in [1]. A measurement server
checks the delay/loss status of each packet in reports from
endpoints. The computational complexity of the process
is O(NP), where N and P denote the number of flows
and the number of probe packets in a flow, respectively.
The conventional method finishes after this process, then
the computational complexity of the conventional method
is O(NP). Since the proposed method requires additional
processes for conversion and uniting processes, the com-
putational complexity of the proposed method is roughly
O(NP+N2M2+N ML+ L3K3), where M denotes the max-
imum number of congestion periods of a flow. L and K
denote the maximum number of samples in a congestion
period and the maximum number of flows in a link, respec-
tively. Since we assume sparseness of congested links M
and L are significantly smaller than P. Moreover, in general
networks, N , L, and K are small compared to P. Needless
to say, the proposed method requires a longer processing
time compared to the conventional method. However, the
requirement of the processing time is not severe, since the
packet-level statistics are calculated after a measurement pe-
riod in an offline manner.

4.2 Recursive Conversion Technique to Utilize All Probe
Flows

By repeatedly converting samples obtained from each probe
flow, the proposed method utilizes information of all probe
flows that include flows with different sources and destina-
tions. Even if both source and destination are different, flows
that share a part of paths includes information of the target
flow. By checking whether conversion of samples is possible
for all pairs of congestion periods of all probe flows, trees that
represent dependency of conversions are generated for each
congestion period (see Fig. 5). The proposed method recur-
sively converts/unites samples from the leaves to the root of
the tree. In the case of Fig. 5, the samples of Flow D can be
converted/united to the samples of Flow B since Flow D and
Flow B share their destinations in Fig. 10. These samples
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Fig. 5 An example of a dependency tree for a recursive conversion.

including samples converted/united fromFlowD can be con-
verted/united to the samples of Flow A that share the source
with Flow B. As a result, the samples of Flow D that share
neither sources nor destinations can be converted/united to
the samples of Flow A through the samples of Flow B.

In the evaluation we will perform in Sect. 6, we mea-
sure the loss rate of the full-meshed paths, but the proposed
method can also be applied to a subset of the universal path
set. However, if the following conditions do not hold, the
accuracy improvements by the proposed method will not be
benefited.

• Two or more paths are measured at the same time.
• At least one link is included in multiple paths.
• In all path pairs that share a link, at least one pair has
common a source or a destination.

If the number of measured paths or the number of shared
links is small, the accuracy improvement may be limited.
However, the accuracy of the proposed method is guaranteed
to be equal to or higher than the conventional method in the
measurement for any subset of paths.

The computational complexity of the conversion pro-
cess of the proposed method is O(N M) for each congestion
period, where N and M denote the number of flows and
the maximum number of samples in a congestion period,
respectively.

5. Theoretical Accuracy

With an assumption regarding the injection time of probe
packets, we provide a theoretical analysis of accuracy
bounds. We assume that an injection time of a probe packet
follows a uniformdistribution on ameasurement period [0,T]
and these injection times are independent and identically dis-
tributed (i.i.d.). If we decide times of probe packets in such a
manner, an injection time of a packet that is decided latermay
be injected earlier than the first decided packet, namely, the
order of decision will not correspond to the order of packet
injection. However, the order of the injection is not impor-
tant in the discussion of this section. The assumption of
i.i.d. injection time is not always suitable for probe injection
of conventional loss measurements or simulation settings in
Sect. 6. However, the theoretical analysis under the assump-
tion gives us a fundamental insight since the probe injection
under the assumption corresponds Poisson process, one of
the most basic probe injections, when T →∞. The theoreti-
cal analysis for the Poisson process is a lough approximation
of analysis for periodical probe injection that wewill perform
in Sect. 6.

Under the assumption, an estimator of conventional loss
measurements can be modeled by a binomial distribution. In
conventional loss measurements, probe packets are injected,
and the number |LA | of loss samples is observed. If we
assume the packet injection times of probe packets follow
a uniform distribution on a measurement period, the trials
to inject probe packets investigating loss events can be re-
garded as Bernoulli trials. Then, the number |LA | of loss
samples follows a binomial distribution B(n, p), where n and
p represent the number |XA | + |LA | of probe packets and the
ground truth of the loss rate on path A, respectively. The
conventional estimator p̂ for path A is the random variable
|LA | (i.e., the number of loss samples) divided by the total
number |XA | + |LA | of probe packets.

When we evaluate the accuracy of the conventional
method by using Root Mean Squared Errors (RMSE), we
can analytically calculate the accuracy. From the definition
of Mean Squared Errors (MSE), MSE can be expressed as a
sum of variance Var[p̂] and bias E[p̂] − p of the estimator.

MSE = E[(p̂ − p)2]

= Var[p̂] + (E[p̂] − p)2.

Since the conventional estimator with uniformly distributed
probe packets is an unbiased estimator, MSE is equal to the
variance of the estimator p̂. As we mentioned above, the
estimator is the random variable |LA | that follows a binomial
distribution divided by a constant |XA | + |LA |. Since the
variance of |LA | ∼ B(n, p) is np(1 − p), MSE can be derived
as follows:

MSE =
p(1 − p)
|XA | + |LA |

. (1)

In a similar manner, we are able to calculate the upper
bounds of MSE of the proposed estimator. In the proposed
method, when we measure the loss rate on a path, we con-
vert and unite samples in congestion periods from the other
flows. In the most inaccurate case of the proposed method,
no samples are converted/united from the other flows, and
the sampling rate is the same as the conventional method.
Namely, the upper bound of MSE in the proposed method is
MSE of the conventional estimator shown in Eq. (1).

On the other hand, the upper bounds of MSE of the
proposed method are the MSE when all samples in the flows
that share a part of paths with target flow are converted/
united. By conversion and uniting process, the sampling
rate increase in a pseudo manner. If the number of con-
verted/united flows is m in a congestion period, the sampling
rate increasesm+1 times in the congestion period comparing
to the original rate. Though the pseudo increase of sampling
rate is temporal, the temporal increase has the same effect
as constantly increasing the rate of probe packet injection.
Because we assume that most of the packet loss events are
caused by buffer overflows. Consequently, the lower bound
of MSE of the proposed method can be derived by

MSElb =
p(1 − p)

mmax(|XA | + |LA |)
, (2)
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where mmax denotes the maximum number of flows that pass
links contained in the path of Flow A.

6. Evaluations

We perform ns-3 [17] simulations to confirm that the number
of captured loss events increases and accuracy of a loss rate
estimation is improved.

6.1 Simulation Settings

The network we simulated resembles Internet2 topol-
ogy [18] with 9 nodes and 13 links whose capacities are
15.552 [Mbps] (see Fig. 10). The numerical values writ-
ten beside the links in Fig. 10 indicate propagation delay in
ms (milisecond), and we set them proportional to the dis-
tance between the nodes in Internet2. The topology of this
simulation resembles the topology of Internet2 core trans-
port network, but the assumptions of the proposed method
shown in Sect. 2 are applicable to more general wired net-
works. Note that the simulation results are not limited to
core transport networks.

2 types of user flows and 1 type of probe flow listed in
Table 1 stream between all pairs of 9 nodes (i.e. 9 × 8 = 72
flows for each type in the entire network). Phases of packet
injection are randomized while probe packets are injected
periodically. The probe packets are commonly used for the
proposed method and the conventional method. The com-
munication overheads of the proposed method and the con-
ventionalmethod are completely equivalent in the simulation
since the probe packets used by both methods are the same.
Since the capacity of all the links are 15.552 [Mbps], if two
or more flows of bursty traffic are joined at the link, traf-
fic intensity on a link temporally exceeds the link capacity,
thereby occurring a buffer overflow due to temporal capacity
shortage. Though the congested links are sparse, congestions
on multiple links can occur at the same time. Each node is
configured with a drop-tail queue whose maximum size is
1024 for all interfaces. The simulation time is 1005.0 [s] and
we only use the data from 5.0 [s] to 1005.0 [s].

To achieve valid evaluations through the simulation, it
is important that the statistics regarding probe packet losses
are accurately emulated in the simulation. First, the essen-
tial thing is to make the loss rate, which is one of the most
important statistics, realistic. In the above simulation set-
tings, we tuned the traffic intensity in the simulation so that
the loss rate corresponds to QoS classes defined by ITU-
T Recommendation Y.1541 [14]. Also, since the proposed
method unites loss events observed on multiple flows in a
congestion period, it is very important that the duration of
the loss events in a congestion period is reasonable. In the
above simulation settings, the duration of loss events at Link
3-2, which has the highest loss rate, ranges from 0.14 s to
1.01 s. The duration of the loss events in our simulation
is consistent with the distribution of duration of loss events
reported in [19], which is one of the few studies regarding
the duration of loss events.

Table 1 Types of traffic in our simulations.

User Packet size 600 [Byte]
(Stationary) Traffic pattern Poisson arrivals

Traffic intensity 388.8 [Kbps]
(4% of a link capacity)

User Packet size 500 [Byte]
(Bursty) Traffic pattern On/off process with periodic

arrivals in bursty periods
Traffic intensity 10,000 [Kbps] in bursty periods

0 [bps] in idle periods
Bursty period Exponential distribution

with mean 1.0 [s]
Idle period Exponential distribution

with mean 100.0 [s]
Probe Packet size 74 [Byte]

Traffic pattern Periodic arrivals
Packet intervals δ 200 [ms]

The parameters of the proposed method are set as fol-
lows. The delay threshold xth to distinguish congestion pe-
riod is set to 0.01 [s]. We use Minimum Entropy Cluster-
ing (MEC) [20] for clustering, and its radius parameter r is
set to 0.1.

These improvements in accuracy have an extremely
large impact on practical measurements. As a typical ex-
ample, we focus on Link 3-2 where the most loss events
were observed. The RMSE of Link 3-2 in the proposed
method and the conventional method are 0.28 × 10−3 and
0.72 × 10−3, respectively. Since the loss rate on the path is
1.5 × 10−3, the ratio of RMSE to the loss rate is 47% and
19%, respectively. Assuming unbiased estimation and er-
rors following a normal distribution, the probability that the
conventional estimator is in range [1.0 × 10−3,2.0 × 10−3)
is 51%. In other words, the first digit of the estimator is
not correct with a probability of 49%. In contrast, the first
digit of the proposed estimator is correct with a probability
of 91%. After all, when we estimate a loss rate 1.0× 10−3 of
classes 0-4 defined in ITU-T Recommendation Y.1541, the
accuracy improvement by the proposed method has a large
impact on the measurement. This tendency is even more
pronounced for smaller loss rates. For Link 2-1 with the loss
rate 2.1× 10−4, the ratio of RMSE to the loss rate is 27% for
the proposed estimator, while it is 93% for the conventional
estimator.

6.2 Simulation Results

We evaluate the accuracy of the loss rate estimation of the
proposed method. The simulation was repeated 10 times
by changing the phase of the probe packet injection time.
Figure 6 shows the loss rate on the paths where loss events
were captured at least once by stationary user flows. Root
Mean Squared Errors (RMSE) between the estimator of loss
rate and loss rate experienced by packets of the stationary
user flows are calculated. Note that the loss rate experienced
by packets with Poisson arrivals corresponds to the time
average of the loss process due to PASTA (Poisson Arrivals
See Time Averages) property [21]. The result is shown in
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Fig. 6 Estimators of packet loss rate in the proposed and conventional methods.

Fig. 7 RMSE of loss rate estimations.

Fig. 8 MAPE of loss rate estimations.

Fig. 9 The number of loss events that are captured by probe flows for each path.

Fig. 7. Note that we use RMSE instead of MSE to make it
easier to compare with the estimator. The maximum loss
rate experienced by stationary user flows was about 1.7 ×
10−3. The conventional estimator in this section is simply
calculated as the ratio of the number of loss samples to the
total number of samples. Note that it is not the method in [1].
The simple estimator is adapted by many prior works [10],
[11], [22]. The results on paths in which any loss event is not
captured by the stationary user flow are omitted in Fig. 7. In
the results of no recursive conversion in Fig. 7, only samples

of flows that have the same source/destination with a target
probe flow are converted.

We can confirm that RMSE of each probe flow is re-
duced by the proposed method. Compared to the con-
ventional method, the proposed method without recursive
conversion provides 31.3% reduction of RMSE on aver-
age. Since the proposed method with recursive conver-
sion achieves 57.5% reduction of RMSE on average, it can
be confirmed that recursive conversion achieves further im-
provement in accuracy. Therefore, the proposed method can
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Fig. 10 Network topology on our evaluations.

improve the accuracy of the loss rate measurement, though
the number of probe packets in the entire network does not
increase compared to that of the conventional method. The
accuracy improvement is caused by the increase of sam-
ples that capture loss events. The increase of the samples
is shown in Fig. 9. “Expected” in Fig. 9 represents the ex-
pected number of loss events experienced by probe packets
on a path. The recursive conversion unites samples from
more flows than the no recursive conversion, thereby in-
creasing the number of captured loss events. In principle,
it is impossible for the conventional method to estimate the
loss rate less than 2.0 × 10−4 since the number of the probe
packets per flow is 5000 in the simulation. However, the
proposed method overcomes this fundamental limitation in
accuracy. We also calculate Mean Absolute Percentage Er-
ror (MAPE) and show the results in Fig. 8. We got a similar
result with the result of RMSE.

To analyze the ratio of inappropriate samples to the ex-
pected samples by an ideal measurement, we confirm the
number of loss samples before and after the clustering pro-
cess in the proposed method. In the proposed method, as in
our previous method [1], after converting/uniting samples,
inappropriate samples are excluded in the clustering pro-
cess. To simplify the analysis, we consider the worst-case
trials with the most loss samples united, focusing on Link 3-
2, which causes the most loss events. We depict the number
of the loss samples in the worst-case trial in Fig. 11. In
Fig. 11, “Before clustering” and “After clustering” represent
the number of loss samples before and after the clustering
process. “Ideal” in Fig. 11 indicates the expected number of
loss samples if we achieve perfect uniting. We can confirm
that more loss samples were counted than expected due to
falsely uniting loss samples before the clustering process.
However, loss samples that may be falsely united are ex-
cluded (a little excessively) in the clustering process. As a
result, the final samples obtained by the proposed method
do not include false loss samples. Although excessive exclu-
sion is not desirable, the estimator of the proposed method
is more accurate than that of the conventional method while
maintaining the unbiased estimator. The above results, in
which the false loss samples are sufficiently excluded, are
consistent with the result in Fig. 6 and Fig. 7.

6.3 Analytical Results

In this section, we compare the simulation results with the
theoretical upper/lower bounds of the proposed method that

Fig. 11 The number of loss samples before and after clustering process.

wementioned in Sect. 5. In the simulation settings of Sect. 6,
we count the number of flows that pass through each link and
calculate the maximum number mmax of flows that pass links
contained in a path. Fig. 12 shows the results of the square
root of Eqs. (1) and (2) based on mmax in the simulation.
The two types of red bars are the same as the results of the
proposed method shown in Fig. 7. The black lines show the
upper/lower bounds of RMSE.

We can confirm that most of the results fall between
upper and lower bounds in Fig. 12. Comparing the results of
Fig. 6 and Fig. 12, the proposedmethod achieves a similar ac-
curacy with the theoretical lower bounds in the measurement
of paths with a relatively small loss rate such as Flow ID 0-3.
On the other hand, it can be confirmed that RMSE of a part
of paths with a large loss rate does not close to the lower
bounds. This is because paths with a large loss rate have a
relatively long delay period, and there is a high probability
that other delays will occur during the delay period. The
samples that observe the other delays are removed as shown
in Fig. 3. In addition, since Eq. (1) represents the mean of
MSE, the RMSE of the measurement results of some paths
exceeds the upper bound due to the randomness of the mea-
sured values.

7. Related Works

There is a rich collection of literature that aims at measur-
ing end-to-end metrics [3], [8]–[10], [23]–[27]. Some prior
works [9], [10] tried to estimate high quantile of end-to-end
delays by active measurements. Choi et al. [9] proposed
a scheme that estimates high quantile with bounded errors.
The scheme allows us to know the minimum number of
probe packets needed to bound the error of quantile estima-
tion within a prescribed accuracy. Sommers et al. [10] also
proposed an estimator of high quantile. Since the estima-
tor provides confidence intervals, we can tune the number
of probe packets to achieve the required accuracy. Some
works [3], [25], [27] focus on loss measurements. Som-
mers et al. [3], [25] tackled the problem to estimate a mean
loss duration by a statistical approach using back-to-back
packets. Baccelli et al. [27] and Parker et al. [22] provided
how to chose the best probing on an active measurement.

The effect of probe packets on the path quality has been
also studied [4], [7], [8], [12], [21]. References [4], [21]
showed that an arrival process of the probe packets affects
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Fig. 12 Upper/lower bounds of theoretical accuracy of the proposed method.

accuracy of end-to-end delay/loss measurement. Degrada-
tion of measurement accuracy caused by probe traffic load
were studied in references [7], [8], [12]. The limitation of
single flowmeasurements can be understood by these works.
The optimum probe rate that does not affect the path quality
has been investigated in these works [6], [7], [11], and the
proposed method provides a method to maximize the accu-
racy by utilizing the probe packets with this optimum probe
rate.

In recent years, research onmeasurements with network
telemetry has been actively studied. Network telemetry is a
modern and excellent method. However, it depends on the
functions of network devices, so it is not always available.
Active measurements, including the proposed method, can
be performed easily by sending packets to a network, and
the measurements do not depend on the functions inside
networks. Hence, traditional active measurements are still
a powerful tool for network measurements, especially for
researchers who do not have direct access to the functions of
network devices. In addition, active measurements are also
effective for measurements across multiple organizations,
such as Internet-wide measurements.

8. Conclusions and Future Works

We proposed a loss measurement method that fully utilizes
flows, including flows with different sources and destina-
tions in this paper. We extended the delay measurement
method [1] that utilizes parallel active probe flows to loss
measurements. Additionally, our method includes a recur-
sive conversion technique that enables us to fully utilize
information of all probe flows for a measurement though the
method [1] only utilize information of flows that have the
same source/destination with a target probe flow.

We provided the theoretical analysis and the simulation-
based evaluation for the proposed method. We show that
the accuracy of the proposed method is bounded by up-
per and lower bounds in the theoretical analysis. Through
simulation-based evaluation using ns-3 simulator, we con-
firmed that the proposedmethod can reduce estimation errors
by 57.5% on average.

As future research, we plan to develop highly accurate
delay/loss tomography using the parallelmonitoringmethod.
Additionally, we also have a plan to implement the proposed
method for a real network, and evaluate the effectiveness of

the method. Our future work includes the reduction of the
computational complexity of the proposed method.
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