
A Method for Network Intrusion Detection Using
Flow Sequence and BERT Framework

Loc Gia Nguyen
Graduate School of Engineering

Nagaoka University of Technology
Nagaoka, Niigata, Japan

s203145@stn.nagaokaut.ac.jp

Kohei Watabe
Graduate School of Engineering

Nagaoka University of Technology
Nagaoka, Niigata, Japan

k watabe@vos.nagaokaut.ac.jp

Abstract—A Network Intrusion Detection System (NIDS) is a
tool that identifies potential threats to a network. Recently, dif-
ferent flow-based NIDS designs utilizing Machine Learning (ML)
algorithms have been proposed as solutions to detect intrusions
efficiently. However, conventional ML-based classifiers have not
seen widespread adoption in the real world due to their poor do-
main adaptation capability. In this research, our goal is to explore
the possibility of using sequences of flows to improve the domain
adaptation capability of network intrusion detection systems.
Our proposal employs natural language processing techniques
and Bidirectional Encoder Representations from Transformers
framework, which is an effective technique for modeling data
with respect to its context. Early empirical results show that our
approach has improved domain adaptation capability compared
to previous approaches. The proposed approach provides a new
research method for building a robust intrusion detection system.

Index Terms—Network security, NIDS, deep learning, BERT,
CIDDS-001

I. INTRODUCTION

As more of our daily lives depend on computer networks,
safeguarding the information contained within these systems
and maintaining service availability has become a necessity.
Systems that handle financial transactions, personal informa-
tion, or those that serve as social platforms are prime targets
for bad actors seeking to gain financial assets or influence
over society. Currently, many different cybersecurity measures
are deployed in tandem to counter these threats, and intrusion
detection is an important component of these measures.

Intrusion detection is the process of monitoring the events
occurring in a computer system or network and analyzing them
for signs of malicious activities. Network traffic is captured in
either packet-based or flow-based format. Packet-based data
contain complete payload information. Flow-based data are
aggregated packet-based data and typically contain various
properties of the collection of packets and metadata from
network connections [2]. NIDSs, therefore, can be separated
into two categories: packet-based and flow-based. The former
analyzed individual packet payloads and header information,

An earlier and short version of this paper was presented at the 18th Inter-
national Conference on emerging Networking EXperiments and Technologies
Student Workshop (CoNEXT-SW ’22) [1].

This work was partly supported by JSPS KAKENHI Grant Number
JP20H04172.

while the latter only analyzed the aggregated properties of a
collection of packets. The speed at which flow-based NIDSs
analyze network traffic has made it the preferred solution for
modern network security systems.

Changes in the users’ behavior or appearances of new
attacks manifest as shifts in the distribution of flow features.
Therefore, NIDSs need to adapt to the new benign flows
while still being able to detect malicious ones. Flow-based
NIDSs analyze the properties of the packet collections using
machine learning algorithms, such as K-Nearest Neighbors and
Random Forest. However, these machine learning algorithms
often adapt poorly to changes in data distributions, which are
common in real-world deployment, which in turn limits their
usefulness [3], [4]. To improve the domain adaptability of
NIDSs, Camila et. al. [5] proposed the Energy-based Flow
classifier (EFC) - a statistical approach where the NIDS
would model the statistical distribution of benign flows, then
classifies flow that deviates from this distribution as malicious.
Although it improves the domain adaptability of NIDSs, there
are still limitations on certain data distributions. We assume
that the reason for the limitations of current algorithms is the
use of singular flows as input data, as the classifier can only
model the distribution of features within a flow.

In this paper, we propose the use of a sequence of flows,
i.e., a collection of flows that are temporally close together,
and Bidirectional Encoder Representations from Transformers
(BERT) framework to obtain the representation of a network
flow in a sequence. A Multi-layer Perceptron (MLP) then pro-
cesses this vector representation to produce the classification
result of the flow. To the best of our knowledge, this is the
first example of using BERT to improve the domain adaptation
capability of NIDS. This paper evaluates the performance
of our proposal on the entirety of the CIDDS data sets, as
opposed to a subset of data in an earlier version [1].

In summary, the contribution of this study is as follows.

• We investigate the possibility of using information from
a sequence of network flows to improve the domain
adaptation capability of the network intrusion detection
system.

• We propose an NIDS that uses BERT for feature extrac-
tion and MLP for classification.

This is the post-print version of the following article: Loc Gia Nguyen and Kohei Watabe, ``A Method for Network Intrusion Detection Using Flow Sequence and BERT Framework,'' in Proceedings of 2023 IEEE International Conference on
Communication (ICC 2023), 2023. The original publication is available at https://doi.org/10.1109/ICC45041.2023.10279335 (DOI: 10.1109/ICC45041.2023.10279335). (c) 2023 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components
of this work in other works.

• We demonstrate the domain adaptation capability of the
proposed system using authentic and synthetic data sets.

The rest of the paper is organized as follows: In section II,
we present an overview of prominent studies in the literature
on flow-based NIDSs. Section III provides the basic concept
of network flow and network intrusion detection system, the
data sets used in this study, and an introduction to the BERT
framework. Section IV illustrates the details of the proposal
and its evaluation method. Performance evaluation results of
our proposal and related discussion are provided in Section V.
Finally, Section VI concludes this paper.

II. RELATED WORKS

The use of machine learning for implementing NIDSs has
been extensively researched [6], with deep learning methods
being employed to further improve upon machine learning
methods by using deep learning models to extract features
from flow data. A popular technique for feature extraction in
NIDS is the autoencoder. It works on the idea of matching the
output as close the to input as possible by learning the best
features. Shone et al. [7], Yan et al. [8] and Al-Qatf et al. [9]
showed that autoencoders can retain important information
about a flow while reducing its dimensions. This approach
reduces the processing time needed by machine learning
classifiers and boosts their classification capability. Andresini
et al. [10] trained different autoencoders for each type of flow
and uses the representation produced by these autoencoders to
train a classifier. Khan et al. [11] showed that autoencoders
can also be used as a scoring function that takes the features
of a flow as input and returns a score. The autoencoder in this
case is optimized to assign a low score for normal flow and a
high score for suspicious flows.

Thapa et al. [12] conducted an experimental comparison of
NIDSs based on various machine learning and deep learning
techniques. Their performance was evaluated on CIDDS-
001 and CIDDS-002 data sets. The study includes k-nearest
neighbors, XGBoost, and decision tree classifiers as machine
learning techniques. For deep learning techniques, Embedding
Layer, Convolutional Neural Network, and Long Short Term
Memory were considered.

A model is only as good as the data used to train it. The
preparation of data for training NIDSs is also an important as-
pect of NIDS research. Verma et al. [13] performed a statistical
analysis of the labeled flow-based CIDDS-001 dataset using
k-nearest neighbor classification and k-means clustering algo-
rithms. Abdulhammed et al. [14] proposed several techniques
to handle imbalanced training data and improve NIDSs perfor-
mance. The effectiveness of sampling methods on CIDDS-001
is studied and experimentally evaluated through deep neural
networks, random forest, voting, variational autoencoder, and
stacking machine learning classifiers.

All of the previously mentioned papers focused on improv-
ing the detection of malicious activities and did not evaluate
the performance of the approaches concerning changing data
distributions. Camila et al. [5] stated that machine learning
approaches adapt poorly to changing data distributions and

TABLE I
ATTRIBUTES WITHIN THE CIDDS-001 AND CIDDS-002 DATA SETS

Name Description
1 Date first seen Start time flow first seen
2 Duration Duration of the flow
3 Proto Transport Protocol (e.g. ICMP, TCP, or UDP)
4 Src IP Source IP Address
5 Src Pt Source Port
6 Dst IP Destination IP Address
7 Dst Pt Destination Port
8 Packets Number of transmitted packets
9 Bytes Number of transmitted bytes
10 Flags OR concatenation of all TCP Flags

proposed Energy-base Flow Classifier (EFC). This algorithm
is based on inverse statistics to infer a statistical model based
on benign flows. The authors showed that the algorithm could
adapt to different data distributions, making it suitable for
detecting zero-day threats.

III. MATERIALS

In this section, first, we introduce the concept of the subject
of our research, network traffic flow data. Second, we present
the data sets used to evaluate NIDS performance. Finally, we
provide an overview of the BERT framework.

A. Network traffic flow data

A network flow is a sequence of packets carrying in-
formation between two hosts where packets have common
properties. All packets within a flow share the same 5-tuple
(Src IP, Src Pt, Dst IP, Dst Pt, Proto). All inter-packet times are
less than an arbitrary flow expiry timeout value. Other than the
5-tuple or 3-tuple, a flow can include other flow keys, such
as the number of transmitted packets, bytes, etc. There are
many standards for flow data formats, including NetFlow and
OpenFlow.

B. Benchmark data sets

CIDDS-001 [15] and CIDDS-002 [16] are relatively recent
intrusion detection benchmark data sets containing unidirec-
tional NetFlow data. The CIDDS-001 data set contains two
sets of flows, one is captured within a simulated OpenStack
environment, and the other is captured from a server deployed
on the Internet. The CIDDS-002 data set contains one set of
flows from a simulated OpenStack environment.

In this study, CIDDS-001 OpenStack, CIDDS-001 External
Server, and CIDDS-002 OpenStack environments are used to
evaluate the domain adaptation capability of our proposal.
Within the CIDDS-001 data set, a change from the simulated
OpenStack environment to the external server environment
is considered a domain change, as the distribution of flow
features differs between the environments. Similarly, a change
from CIDDS-001 to CIDDS-002 OpenStack environment is
also considered a domain change. We utilize these domain
changes to evaluate the domain adaptation capability of our
proposal.

The network flows within CIDDS-001 and CIDDS-002
are all labeled. In the OpenStack environment of CIDDS-
001 and CIDDS-002, benign flows are labeled normal, while
malicious flows are labeled dos, scan, portScan, pingScan,
or bruteForce, according to the type of attack. The External
Server environment contains both simulated flows from the
OpenStack environment and real flows from the internet. The
real flows were labeled unknown for traffic to port 80 and
443 and suspicious for the remaining traffic. Flows labeled
unknown are likely to be traffic from normal users and are
considered benign in this study, and those labeled suspicious
are considered malicious.

Table I shows an overview of the attributes within the
CIDDS-001 and CIDDS-002 data sets. Source IP address,
destination IP address, and Date first seen were not used for
classification in this study as they are arbitrary and carry no
useful information.

C. Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers
(BERT) [17] is a transformer-based machine-learning tech-
nique for NLP developed by Google. The BERT framework
comprises two steps: pre-training and fine-tuning. In pre-
training, the BERT model trains on unlabeled data. For fine-
tuning, the model is initialized using the pre-trained parameters
and then trained using labeled data from the downstream tasks.
BERT is pre-trained with two unsupervised tasks: Masked
Language Modeling (MLM) and Next Sentence Prediction
(NSP). In MLM, some words in a sentence are replaced with
a different token. The objective is to predict the original value
of the masked words based on other unmasked words in the
sentence. In NSP, BERT takes sentence pairs as input. The
objective is to predict whether the second sentence in the
pair is the next in the document. For fine-tuning, task-specific
inputs and outputs are added to a pre-trained BERT model.

IV. METHOD

In this section, we first highlight the benefit of using a
sequence of flows as input for our NIDS. Next, we describe
the detail of our proposed system architecture. Finally, we
elaborate on the evaluation methods used in this study.

A. Conditional information from flow sequence

A sequence of flows are flows that appear temporally near
to one another. We can determine the appearance probability
of the next flow in the network based on past flows. Table II
shows two flow sequences where a flow can be distinguished
between malicious or benign based on the information pro-
vided by the sequence. The flows in bold have similar port
numbers and flags, however, they are malicious in the first
sequence and benign in the second sequence. If we were to
classify these flow base on their features alone, these flows
would all be classified as either benign or malicious. In the
first sequence, these flows appear multiple times in a row and
exhibit rapid changing of port numbers, this can be a pattern of
an attacker retrying attacks at port 22. In the second sequence,

TABLE II
EXAMPLE OF TWO SEQUENCES OF FLOWS FROM CIDDS-001 DATA SET

Duration Proto Src Pt Dst Pt Packets Bytes Flags Class
9.588 TCP 22 47695 19 3185 .AP.SF suspicious
9.588 TCP 47695 22 15 2163 .AP.SF suspicious
9.555 TCP 54731 22 15 2163 .AP.SF suspicious
9.555 TCP 22 54731 19 3185 .AP.SF suspicious
10.412 TCP 22 57489 19 3185 .AP.SF suspicious
10.412 TCP 57489 22 15 2163 .AP.SF suspicious
0 UDP 56475 19 1 46 suspicious
0 ICMP 0 3.3 1 57 suspicious
11.03 TCP 33056 22 19 2383 .AP.SF suspicious
11.03 TCP 22 33056 21 3369 .AP.SF suspicious
0.054 TCP 8000 52252 7 556 .AP.SF normal
0.054 TCP 52252 8000 6 515 .AP.SF normal
0.077 TCP 8000 52253 7 702 .AP.SF normal
0.077 TCP 52253 8000 6 586 .AP.SF normal
526.089 TCP 22 59862 178 24253 .AP.SF normal
526.089 TCP 59862 22 180 13471 .AP.SF normal
0 TCP 53213 23 1 46S. suspicious
0 TCP 23 53213 1 40 .A.R.. suspicious
0.07 TCP 8000 52243 7 702 .AP.SF normal
0.07 TCP 52243 8000 6 586 .AP.SF normal

... ...

Linear
layer

768 to 2

benign 0.99
malicious 0.01

...

benign

...

predictions
probabilities

output
predictions

sequence
of flows

[12,
43,
23,
54,
85,
23]

[0.1, -0.2, ...]
[-0.0, -0.2, ...]
[0.3, 0.9, ...]
[0.7, -0.2, ...]
[0.8, -0.3, ...]
[0.2, 0.1, ...]

Src Pt: 445
Dst Pt: 48888

Proto+Flags: TCP.AP...
Packets: 1
Bytes: 108

Duration: 0.000

6 features

[0.3, 0.4, ...]
[0.7, -0.3, ...]
[-0.9, 0.7, ...]
[0.5, -0.8, ...]
[-0.3, -0.3, ...]
[0.4, 0.6, ...]

[0.99,
0.01] benign

...

BERT

768-dim vector
(128 x 6)

768-dim vector
(128 x 6) 2-dim vector

6-dim vector

Fig. 1. Proposed system architecture

the flows appear isolated. In cases where flow features are
nearly identical, the extra information provided by examining
the flows surrounding the target flow helps to distinguish them.
The patterns that arise in a sequence of flows are feature
agnostic, that is the same pattern can appear with arbitrary
features. Therefore, information from flow sequence is robust
between different domains, where features within flows might
vary. In summary, with the use of sequences of flows, extra
information can be made available to the classifier, and this
information is independent of the features within flows.

B. System architecture

We propose a method for detecting network intrusion based
on the BERT and MLP models. The BERT model functions
as a feature extractor, transforming network traffic flows
into vectors. While the MLP model function as a classifier,
classifying network traffic flows into benign and malicious
flows.

We first organize network traffic flows into sequences, with
a flow being considered analogous to a word and a sequence
of flows to a sentence. Similar to how natural languages
are processed, the sequences of flows are then encoded into
sequences of tokens. Training of the proposed model consists
of two steps. First, we pre-train the BERT model using the
MLM task and only the benign flows. Since there is no
inherent order to flows, we opt not to use positional encoding
and special starting and ending tokens as used in the typical
BERT framework. Second, we replace the MLM output layer

TABLE III
LABELS WITHIN CIDDS ENVIRONMENTS

CIDDS-001 OpenStack CIDDS-001 External Server CIDDS-002 OpenStack
Label # Label # Label #
normal 28051906 normal 134240 normal 15598543
dos 2959027 unknown 77923 scan 562640
portScan 265918 suspicious 437911
pingScan 6090 portScan 18719
bruteForce 4992 bruteForce 2448

TABLE IV
NUMBER OF LABELS IN EACH DATA SET USED IN THIS STUDY

CIDDS-001 CIDDS-001 CIDDS-001 CIDDS-002internal balanced external
Benign 28051906 3236027 212163 15598543
Malicious 3236027 3236027 459078 562640
Total 31287933 6472054 671241 16161183

with an MLP classifier and perform fine-tuning. In this step,
we used all the flows in the data set and their labels to train the
BERT model and MLP classifier. Preserving the distribution
of flows within a sequence is important; therefore, the flows in
the training data set are not shuffled. We use cross-entropy as
the training criterion for both steps. It maximizes the likelihood
of guessing the correct flow features given the context in the
first step and the correct label in the second step.

V. EVALUATION

A. Model configuration

The overall architecture of the system is illustrated in
Figure 1. Each flow contains six features, these features are
encoded as numbers (flowi). BERT decodes each number into
a 128-dimension vector, concatenates them to form a 768-
dimension vector (eflowi

), and processes it to represent the
flow as a different 768-dimension vector (hflowi

). The output
of BERT is then passed through a Multilayer Perceptron clas-
sifier (a linear layer with softmax output), which reduces the
dimension from 768 to 2. This 2-dimension vector represents
the probability of each class (benign and malicious). The final
prediction label is chosen to be the class with the higher
probability.

B. Benchmarks

We compare our proposal with EFC - an approach that
aims at better domain adaptability. Other ML-based NIDS
methods included in this comparison are Decision Tree (DT),
K-Nearest Neighbors (KNN), Multilayer Perceptron (MLP),
Naive Bayes (NB), and Support Vector Machine (LinSVM),
AdaBoost (AB) and Random Forest (RF). We deployed the
ML-based classifiers with their default scikit-learn (version
1.1.2) configurations. We created the proposed model using
PyTorch. Flow features are discretized for all classifiers, as
most ML algorithms perform better with discrete than contin-
uous features. We use the discretization thresholds described in
EFC’s paper [5]. Table V details the value of the discretization
thresholds.

We chose the CIDDS-001 and CIDDS-002 data sets to
evaluate the domain adaptation of our proposal due to their

TABLE V
UPPER VALUE OF BINS FOR FEATURE DISCRETIZATION

Feature Upper limit of each bin
Duration 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.01, 0.04, 1, 10, 100, ∞
Protocol TCP, UDP, GRE, ICMP, IGMP
Src Pt 50, 60, 100, 400, 500, 40000, 60000, ∞
Dst Pt 50, 60, 100, 400, 500, 40000, 60000, ∞
Bytes 50, 60, 70, 90, 100, 110, 200, 300, 400, 500, 700, 1000, 5000, ∞
Packets 2, 3, 4, 5, 6, 7, 10, 20, ∞
Flags {(f0, f1, f2, f3, f4, f5) |fi ∈ {0, 1}}

recency and the inclusion of multiple network environments.
Three different environments (domains): CIDDS-001 Open-
Stack, CIDDS-001 External Server, and CIDDS-002 Open-
Stack are used to evaluate the domain adaptation capability of
our proposal compared to other classifiers. The classifier will
be tested on anomaly detection, which is a binary classification
task. Therefore, the labels will be grouped into benign and ma-
licious. Labels within each environment are shown in Table III.
Flows labeled normal and unknown are considered benign,
while those labeled otherwise are considered malicious. The
composition of the data sets used in the experiments is shown
in Table IV.

We conducted two experiments to evaluate the domain adap-
tation capability of our proposal against other classifiers. In
the first experiment, training was performed on the entirety of
flow data from the CIDDS-001 OpenStack environment with
CIDDS-001 internal data set, while testing was performed on
the CIDDS-001 External Server environment with CIDDS-001
external data set and CIDDS-002 OpenStack environment with
the CIDDS-002 data set. As label imbalance in the training
data set can impair the performance of some classifiers [4], a
second experiment in which the training data set is balanced is
conducted. In the second experiment, testing was performed on
the same data sets as in the first experiment. While training
was performed on a subset of flow data from the CIDDS-
001 OpenStack environment. This subset, called CIDDS-001
balanced, is created by keeping all the malicious flow from
the CIDDS-001 OpenStack environment while reducing the
number of benign flows to match its number. The benign flows
were sampled in a way that preserves the order of flows from
the original data set.

C. Metrics

The performance of the proposed method is measured
using Accuracy, F1-score, Recall, and Precision, which are
widely utilized metrics in NIDS studies [6]. These metrics
are computed from TP (True Positive, i.e., malicious traffic
classified as malicious), TN (True Negative, i.e., benign traffic
classified as benign), FP (False Positive, i.e., benign traffic
classified as malicious), and FN (False Negative, i.e., malicious
traffic classified as benign) values. The first metric, accuracy,
is defined as the ratio of correctly classified flows to the total
number of flows.

Accuracy =
TP + TN

TP+ TN+ FP + FN
(1)

TABLE VI
EVALUATION RESULTS - TRAINING PERFORMED ON CIDDS-001

INTERNAL, TESTING PERFORMED ON CIDDS-001 EXTERNAL

Train CIDDS-001 internal
Test CIDDS-001 external

Classifier Accuracy F1-score Recall Precision
Proposal 0.9078 0.9311 0.9120 0.9511
EFC 0.8659 0.9044 0.9278 0.8822
DT 0.8491 0.8800 0.8088 0.9649
KNN 0.7978 0.8270 0.7067 0.9967
LinSVM 0.6784 0.6940 0.5333 0.9933
MLP 0.4380 0.3254 0.1982 0.9087
NB 0.3161 0.0000 0.0000 0.9937
AB 0.4606 0.3812 0.2430 0.8845
RF 0.8177 0.8510 0.7613 0.9647

Precision is defined as the ratio of correctly classified mali-
cious flows to all of the flows classified as malicious.

Precision =
TP

TP + FP
(2)

Recall is defined as the ratio of correctly classified malicious
flows to all of the malicious flows. It is also referred to as
Detection Rate.

Recall =
TP

TP + FN
(3)

The second metric, F1-score, is the harmonic mean of preci-
sion and recall. In other words, it is a statistical technique for
examining the accuracy of a system by considering both recall
and precision of the system.

F1-score = 2× Precision× Recall

Precision + Recall
(4)

D. Evaluation Results

We implemented a BERT model [17] with one layer, one
attention head, and a hidden size of 768. During training, we
use a batch size of 512 and a sequence length of 128 flows
(equivalent to 65536 flows per iteration). Adam optimizer with
a constant learning rate of 10−5. In both experiments, we train
the BERT model with the MLM task for 400 iterations and
then fine-tune freeze the parameters of the BERT model and
only train the MLP classifier for 1100 iterations, finally, we
unfreeze the BERT model and trained both BERT and MLP
for 400 iterations. In total, the model was trained for 2000
iterations. During testing, the sequence length is increased to
1024 flows.

Table VI and Table VII show the results of the first experi-
ment, where training was performed on CIDDS-001 internal.
The proposed method presents the best performance in terms
of accuracy (0.9078 and 0.9913) and F1-score (0.9311 and
0.8578) in both CIDDS-001 external and CIDDS-002 test sets.
EFC ranks second in the CIDDS-001 external test set both in
terms of accuracy (0.8659) and F1-score (0.9044). However,
EFC performs the worst in terms of accuracy (0.9084) and the
third worst in terms of the F1-score (0.3317) in the CIDDS-
002 test set.

TABLE VII
EVALUATION RESULTS - TRAINING PERFORMED ON CIDDS-001

INTERNAL, TESTING PERFORMED ON CIDDS-002

Train CIDDS-001 internal
Test CIDDS-002

Classifier Accuracy F1-score Recall Precision
Proposal 0.9913 0.8578 0.7531 0.9962
EFC 0.9084 0.3317 0.6534 0.2223
DT 0.9880 0.7948 0.6655 0.9864
KNN 0.9879 0.7924 0.6656 0.9789
LinSVM 0.9503 0.1042 0.0830 0.1400
MLP 0.9867 0.7722 0.6479 0.9554
NB 0.9638 0.0006 0.0003 0.0072
AB 0.9837 0.7148 0.5873 0.9131
RF 0.9881 0.7961 0.6670 0.9871

TABLE VIII
EVALUATION RESULTS - TRAINING PERFORMED ON CIDDS-001

BALANCED, TESTING PERFORMED ON CIDDS-001 EXTERNAL

Train CIDDS-001 balanced
Test CIDDS-001 external

Classifier Accuracy F1-score Recall Precision
Proposal 0.8581 0.9002 0.9358 0.8673
EFC 0.8566 0.8985 0.9278 0.8710
DT 0.8496 0.8805 0.8098 0.9646
KNN 0.8128 0.8434 0.7374 0.9850
LinSVM 0.8123 0.8631 0.8650 0.8612
MLP 0.6671 0.6910 0.5441 0.9463
NB 0.2279 0.0282 0.0164 0.1013
AB 0.4742 0.4268 0.2862 0.8386
RF 0.8357 0.8679 0.7893 0.9639

Table VIII and Table IX show the results of the second
experiment, where training was performed on CIDDS-001
balanced. The proposed method presents the best performance
in terms of accuracy (0.8581) and F1-score (0.9002) for
CIDDS-001 external. For CIDDS-002, RF performs the best
in terms of accuracy (0.9875) and F1-score (0.7891). EFC,
again, exhibits strong performance in CIDDS-001 external
but underperformed in CIDDS-002. DT, KNN, LinSVM, and
MLP accuracy and F1-score on CIDDS-001 external improved

TABLE IX
EVALUATION RESULTS - TRAINING PERFORMED ON CIDDS-001

BALANCED, TESTING PERFORMED ON CIDDS-002

Train CIDDS-001 balanced
Test CIDDS-002

Classifier Accuracy F1-score Recall Precision
Proposal 0.9870 0.7717 0.6315 0.9921
EFC 0.9088 0.3327 0.6534 0.2232
DT 0.9874 0.7871 0.6676 0.9586
KNN 0.9874 0.7867 0.6698 0.9532
LinSVM 0.5388 0.0260 0.1767 0.0140
MLP 0.9865 0.7832 0.7021 0.8854
NB 0.7908 0.0007 0.0021 0.0004
AB 0.9817 0.7170 0.6653 0.7774
RF 0.9875 0.7891 0.6692 0.9613

slightly when trained on a balanced data set compared to
an imbalanced one with more benign flows, as CIDDS-001
external is slightly biased toward malicious flow. The same
effect is not observed on the CIDDS-002 test set due to it
being biased toward benign flow, which benefits the classifier
with a low false positive rate.

The extra benign flows present in the CIDDS-001 internal
data set compared to the CIDDS-001 balanced data set do
not have much effect on the performance of EFC, DT, KNN,
AB, and RF. However, they improved the performance of the
proposed method in terms of accuracy and F1 score. The
proposed method benefited the most when trained on the
CIDDS-001 internal data set. We hypothesize that the extra
benign flows provide more contextual information to the BERT
model, improving its ability to identify benign flows, while not
skewing the classification result toward the class with more
samples.

In cases where the proposed model is trained with CIDDS-
001 internal (Table VI, VII), its Precision is much worse than
KNN, the best performing method. Our proposal detected a
greater amount of anomalous flows, and as a result, increases
the number of normal flows flagged as malicious (false pos-
itives), which negatively impacts Precision. Whereas KNN
achieved better Precision by sacrificing the number of flows
flagged as malicious, and therefore, a lot of malicious flows
remained undetected (false negatives).

Overall, the proposed method, together with DT, RF, and
KNN was able to maintain performance across two different
test sets, exhibiting good domain adaptation capability. The
results for DT, RF, and KNN reflect the good performance
reported in prior researches [7], [13], The proposed method
was able to outperform all other classifiers at both test data
sets when trained on CIDDS-001 internal, and CIDDS-001
external test sets when trained on CIDDS-001 balanced.

From the test result, we notice that while EFC performs
well in CIDDS-001 external (same data set used in EFC’s
original paper [5]), its F1-score for the CIDDS-002 test set
(not used in EFC’s original paper) was significantly worse.
We ran an experiment with smaller balanced test sets (with
10000 benign and 10000 malicious flows each) sampled from
CIDDS-002 [1]. We observed that in the smaller test setting,
EFC achieved results comparable to DT, RF, and KNN. We
found that EFC performed well in small and balanced test sets
(as reported by Camila et al.) but its performance degrades
significantly in a large imbalanced test set heavily skewered
toward benign flows (the CIDDS-002 test set).

VI. CONCLUSION

We proposed an NIDS that utilizes a sequence of flows
as input and the BERT model. We theorize that because
conventional ML-based NIDSs only use information from a
single flow, they exhibit poor domain adaptation capability.
The training of our proposed model consists of two steps. In
the first step, we trained the BERT model to predict a flow
given its context using unlabeled data. In the second step, an
MLP classifier is added to the output of the BERT model and

trained on labeled data. Early experimental results on CIDDS-
001 and CIDDS-002 showed the proposed method achieving
consistent results across different domains.

In this study, we used a feedforward neural network to
classify benign and malicious flows, which requires labeled
flow to train the model. In the future, we plan to model the
distribution of benign flow sequences and use the deviations
from this distribution to detect anomalous flows.

REFERENCES

[1] L. G. Nguyen and K. Watabe, “Flow-based network intrusion detection
based on BERT masked language model,” ser. CoNEXT-SW ’22. New
York, NY, USA: Association for Computing Machinery, 2022.

[2] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho,
“A survey of network-based intrusion detection data sets,” Computer
Security, vol. 86, pp. 147–167, 2019.

[3] H. Li, Z. Chen, R. Spolaor, Q. Yan, C. Zhao, and B. Yang, “DART: De-
tecting unseen malware variants using adaptation regularization transfer
learning,” in 2019 IEEE International Conference on Communications
(ICC), 2019, pp. 1–6.

[4] M. Zolanvari, M. A. Teixeira, and R. Jain, “Effect of imbalanced datasets
on security of industrial iot using machine learning,” in 2018 IEEE
International Conference on Intelligence and Security Informatics (ISI),
2018, pp. 112–117.

[5] C. F. T. Pontes, M. M. C. de Souza, J. J. C. Gondim, M. Bishop,
and M. A. Marotta, “A new method for flow-based network intrusion
detection using the inverse potts model,” IEEE Transactions on Network
and Service Management, vol. 18, no. 2, pp. 1125–1136, 2021.

[6] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad,
“Network intrusion detection system: A systematic study of machine
learning and deep learning approaches,” Transactions on Emerging
Telecommunications Technologies, vol. 32, no. 1, Jan. 2021.

[7] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 2, no. 1, pp. 41–50, 2018.

[8] B. Yan and G. Han, “Effective feature extraction via stacked sparse
autoencoder to improve intrusion detection system,” IEEE Access, vol. 6,
pp. 41 238–41 248, 2018.

[9] M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, “Deep learning
approach combining sparse autoencoder with svm for network intrusion
detection,” IEEE Access, vol. 6, pp. 52 843–52 856, 2018.

[10] G. Andresini, A. Appice, N. D. Mauro, C. Loglisci, and D. Malerba,
“Multi-channel deep feature learning for intrusion detection,” IEEE
Access, vol. 8, pp. 53 346–53 359, 2020.

[11] F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, “A novel two-stage
deep learning model for efficient network intrusion detection,” IEEE
Access, vol. 7, pp. 30 373–30 385, 2019.

[12] N. Thapa, Z. Liu, D. B. KC, B. Gokaraju, and K. Roy, “Comparison
of machine learning and deep learning models for network intrusion
detection systems,” Future Internet, vol. 12, no. 10, 2020.

[13] A. Verma and V. Ranga, “Statistical analysis of CIDDS-001 dataset
for network intrusion detection systems using distance-based machine
learning,” Procedia Computer Science, vol. 125, pp. 709–716, Dec.
2017.

[14] R. Abdulhammed, M. Faezipour, A. Abuzneid, and A. AbuMallouh,
“Deep and machine learning approaches for anomaly-based intrusion
detection of imbalanced network traffic,” IEEE Sensors Letters, vol. 3,
no. 1, pp. 1–4, 2019.

[15] M. Ring, S. Wunderlich, D. Gruedl, D. Landes, and A. Hotho, “Flow-
based benchmark data sets for intrusion detection,” in Proceedings of the
16th European Conference on Cyber Warfare and Security (ECCWS).
ACPI, 2017, pp. 361–369.

[16] ——, “Creation of flow-based data sets for intrusion detection,” Infor-
mation Warfare, vol. 16, 2017, to appear.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp.
4171–4186.

