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End-to-end Delay Measurements

End-to-end delay is fundamental for a performance evaluation.

An active measurement is a common method for end-to-end
delay measurements.

Probe packets are injected into a network for measurement.

It is important to achieve accurate measurement without increasing
the number of probe packets.

Since a large delay is a rare event in the modern Internet, high
quantile of delay distribution is still hard to measure.

Network	

Probe packet	User packet	

We record injecting time of probe 	 We record receive time of probe	

We calculate the delay of probe by matching the two data	

Probe Host	

User host	
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Parallel Monitoring of Probe Flows

Multiple probe flows are monitored to measure delays on
multiple paths in parallel for most measurement applications.

e.g., SLA monitoring by Internet Service Providers.

In previous works, only one probe flow of the multiple probe
flows is utilized to measure the end-to-end delay on a path.

However, the information concerning a flow can be utilized
supplementary for improving a measurement of another flow.

Router

Physical/Virtual Link

Flow A

Flow BFlow C
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Objectives

We propose a novel parallel flow monitoring method in which
information concerning all flow can be utilized.

The observation results of multiple flows are partially converted into
the results of a flow that we want to measure.

It does not require any internal information of a measured network
(i.e. a topology, current queue size).

We evaluate the proposed method though simulations.
We confirm that the observation results of 72 parallel flows of active
measurement are appropriately converted between each other.
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Network Model

A network considered within the scope of this work is
represented by a directed graph.

edge : a physical/virtual link and interfaces at both ends of the link.

vertex : a part of a network device other than its interfaces.

Vertex
Edge

Model

Router
Physical/Virtual Link

Interface

An end-to-end delay is consisted of propagation delay and
queueing delay.

Propagation delay can be regarded as a constant.

Edges with large queueing delay are sparse.

To measure delay on paths, probe packets are periodically
injected for all or a part of paths.
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Network Model (2)

A network considered within the scope of this work is
represented by a directed graph.

edge : a physical/virtual link and interfaces at both ends of the link.

vertex : a part of a network device other than its interfaces.

Vertex
Edge

Model

Router
Physical/Virtual Link

Interface Edge

An end-to-end delay is consisted of propagation delay and
queueing delay.

Propagation delay can be regarded as a constant.

Edges with large queueing delay are sparse.

To measure delay on paths, probe packets are periodically
injected for all or a part of paths.
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Overlap of Queueing Delay Processes

χ̂A(t) : A virtual delay which is the queueing delay experienced by a virtual
packet injected into the path of Flow A at time t.

De
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y

Time

A congestion period 
caused by Edge 2

A congestion period 
caused by Edge 3

Flow A

Flow B 1

2

3

54

Flow A

Flow BFlow C

If χ̂A(t) and χ̂B(t) in a congestion period tightly overlap,
information of the period can be utilized each other.

Sufficient conditions for overlap is as follows:
1 The two paths of Flow A and B have the same source;

2 Routes from the source to the last congested edge on the paths are
common;

3 A queueing delay that packets experience on edges after the last
congested edge can be negligible.



CNSM 2017

K. Watabe
S. Hirakawa

K. Nakagawa

Background

Assumptions

Proposal

Estimators

Experiments

Conclusion

a a 9

Sample Conversion Technique

It is, however, difficult to discriminate the above conditions 2

and 3 without using topology and current queue size.

We design a method that uses samples of a virtual queueing
delay process by probe packets.

De
la

y

Overlap or not?

Time
Samples by probe packets

We discriminate whether processes overlap by the following two
steps:
1 Conversion Process

2 Clustering Process
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Conversion Process

We consider that virtual delay processes overlap if the two flows
satisfy the following conditions:
1 The two flows have the same source;

2 The interval between the packet injection times of the first samples
in a congestion period is smaller than δ;

3 The interval between the packet injection times of the last samples
in a congestion period is smaller than δ.

De
la

y

Packet injection time

Samples of Flow A

Samples of Flow B

Packet injection time

De
la

y

The distance of injection times 
of first/last samples are within 

Conversion

Similar conversion can be considered for destination version.
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Clustering Process

If multiple edges are congested at the same time, the conversion
process may convert inappropriate samples.

1

2

3

54

Flow A

Flow BFlow C

D
el

ay
 

A congestion period 
caused by Edge 3

A congestion period 
caused by Edge 2

Samples of Flow A
Samples of Flow B
Samples of Flow C

To remove inappropriate samples, we utilize a clustering
technique in machine learning.

Based on samples that are converted, we construct clusters of
flows using a clustering technique.
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Clustering Process (2)
To use general clustering techniques, we transform samples of
each flow into n-dimensional vectors.
1 Samples are connected by a solution of the widest path problem.

The cost of the edge between two samples is set to the reciprocal of
distance 1√

β2

δ2
(tiA − t j

B)2 + (xi
A − x j

B)2
.

tiA : the injection time of ith probe packet of Flow A.

xi
A : the delay of ith probe packet of Flow A.

β : a control parameter to tune scale of distance of injection time and delay.

2 For each flow, we transform the path into an n-dimensional vector by
making the vertices evenly spaced.

D
el

ay
 

A solution of widest path problem for Flow A

D
el

ay
 

A solution of widest path problem for Flow A
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Limitations

The proposed method has the following limitations.
Momentary congestion: it cannot improve accuracy by converting
samples in very short congestion periods.

Non-sparse congestion: it cannot detect start and end times of a
congestion period if congested edges are not sparse.

Complex routes: it cannot convert samples between flows that are
once forked and rejoined.

De
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Time
Momentary congestion

De
la

y

Time

Non-sparse congestion

Complex routes
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Estimators for Parallel Flow Monitoring

The samples by our method is not uniformly distributed.

It is needed to give weight wi for ith sample with delay di.

wi =

N j/N j for samples in jth congestion period,

1 otherwise.

Average end-to-end delay can be estimated by weighted average
1
N

∑
s

widi,

q-quantile of end-to-end delay can be estimated by kth delay when
delays are arranged in ascending order, where

k = arg max
j

 j∑
i=1

wi ≤ qN

 .
N : The number of original sample.

N j : The number of original sample in jth congestion period.

N j : The number of all sample in jth congestion period.
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Simulation Settings

We perform NS-3 simulations to confirm that samples of parallel
flows are appropriately converted between each other.

3 types of traffic stream between all pairs of 9 nodes in a
network (i.e., 72 flows stream for each type).

Stationary Packet size 600 [Byte]
Traffic pattern Poisson arrivals

Traffic intensity 388.8 [Kbps] (4% of a link capacity)
Burst Packet size 500 [Byte]

Traffic pattern On/off process with periodic arrivals
Traffic intensity 8,000 [Kbps] in burst periods

Burst period Exponential distribution with mean 0.1 [s]
Idle period Exponential distribution with mean 4.0 [s]

Probe Packet size 74 [Byte]
Traffic pattern Periodic arrivals

		𝐶# 		𝐶$ 		𝐶% 		𝐶& 		𝐶'

		𝐶(		𝐶)		𝐶*		𝐶+

Internal link

13.42

9.13

2.77

6.99

9.05

10.00

10.45

6.8913.29

13.03 8.18

17.05 13.85

External link
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Simulation Settings (2)

The parameters in the proposed method are as follows:
β = 0.16 : The tuning parameter in clustering process.

δ = 0.2 : Probe packet intervals.

xth = 0.01 : The threshold to define start/end time of congestion
periods.

In the clustering process, we use Minimum Entropy Clustering
(MEC) with 2 parameters:
α = 0.001 : The radius parameter.

e = 10 : The expected number of clusters.

The simulation time is 42 [s] and we only use the data from
20 [s] to 42 [s].

The simulation is repeated 10 times by changing the phase of
the probe packet injection time.
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Examples of Added/removed Samples

We depict examples of samples by the conventional and the
proposed method.

Flow ID 5-3
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The number of samples of the proposed method is larger than
those of the conventional method.

The samples tightly approximate the virtual delay.

Most of removed samples are not on the virtual delay.
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Examples of Added/removed Samples (2)

We depict examples of samples by the conventional and the
proposed method.

Flow ID 6-4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

20 20.5 21 21.5 22

De
la

y 
[s

ec
]

Packet injection time [sec]

Virtual delay
Proposed method
Conventional method
Removed samples

The number of samples of the proposed method is larger than
those of the conventional method.

The samples tightly approximate the virtual delay.

Most of removed samples are not on the virtual delay.
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Delays, Number of samples

The number of added samples by the proposed method is
shown.

We display only flows that experience large delay.
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The number of original samples that are obtained from probe
packets is 110 samples.

Up to 78 samples are converted into samples of a flow.
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Delays, Number of samples (2)

We also evaluate Root Mean Squared Errors (RMSE) when the
99th-percentile of end-to-end delay is measured.

The error bars represent 95% confidence intervals.
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The proposed method provides up to 95% reduction of RMSE
(Flow ID 8-2).

The RMSE reduction rate of the worst flow is reduced by 28%
(Flow ID 0-7 vs 5-3).
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Dependency of RMSE on Probe Intervals δ

We compare RMSE of 99th-percentile of end-to-end delay by
changing probe packet interval δ from 0.1 to 1.0 [s].
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The values of maximum RMSE reduction rate for flows are high.

RMSE reduction rate of the worst flow and median of RMSE
reduction rate occasionally decrease to nearly 0.
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Independency of RMSE in MEC

We confirm the dependency of RMSE on parameters of MEC.
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It is confirmed that the RMSE is independent of the parameter
from the figure.
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Independency of RMSE in MEC (2)

We confirm the dependency of RMSE on parameters of MEC.
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It is confirmed that the RMSE is independent of the parameter
from the figure.
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Dependency of RMSE on β

We verify the dependency of the performance of the proposed
method on parameter β.
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The maximum RMSE reduction rate for flows increases as
parameter β increases.

The other reduction rate decrease due to the inappropriate
conversions of samples when β is between 0.64 and 2.56.
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Conlusion

In this paper, we proposed a parallel flow monitoring method
that achieves accurate measurement by partially converting
the observation results each other.

The proposed method adds to samples of a flow from the
samples of the other flows.

It also removes inappropriate samples using a clustering
technique in machine learning.

It provides up to 95% reduction of errors, and the error of the
worst flow among all flows is reduced by 28%.
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Future Works

We have the following 4 directions for future works.
Automatic tuning of the parameters.

Development of a method that utilizes a network topology for the
conversion process.

Extension toword measurements of other metrics.

Evaluation of the proposed method using real network traffic.
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Thank you for your kind attention.
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